Министерство образования и науки Республики Казахстан Павлодарский государственный университет им. С. Торайгырова Архитектурно – строительный институт Кафедра промышленного и гражданского строительства

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к проведению практических занятий по дисциплине «Строительная механика»

Павлодар

УДК 624.133.138+624.15 ББК 38.623+38.654.1 Т 38

Рекомендовано ученым советом ПГУ им. С. Торайгырова Рецензенты:

кандидат технических наук, профессор Ельмуратов С.К.

Фахрутдинов Г.С., Тлеуленова Г.Т. Строительная механика. Методические указания. – Павлодар, 2005. – 24 с.

Методические указания предназначено для углубленного изучения теоретического материала выданного на лекциях. приводятся примеры для проведения практических занятий.

Методические указания разработаны в соответствии с государственным общеобязательным стандартом образования РК ГОСО РК 3.07.318-2002.

© Фахрутдинов Г.С., Тлеуленова Г.Т. 2005

© Павлодарский государственный университет им. С. Торайгырова, 2005

УТВЕР? Прорект	КДАЮ ор по УР
Пфейфер	-
«»	200г

Составители: к.т.н., доцент Фахрутдинов Г.С. старший преподаватель Тлеуленова Г.Т. Кафедра Промышленного и гражданского строительства Утверждено на заседании кафедры «__»___200__г.Протокол № ___ Заведующий кафедрой _____ М.К.Бейсембаев Одобрено учебно-методическим советом архитектурно-строительного института «____»_____200_г. Протокол № ____ Председатель УМС _____ П.В. Корниенко СОГЛАСОВАНО Директор института ______ М.К. Кудерин «___» ____ 200_г. Н/к ОСиС _____ Г.С. Баяхметова «__» ____ 200_г. ОДОБРЕНО УМО Начальник УМО______Л.Т. Головерина «___» _____ 200_г.

Введение

Статически определимые плоские фермы представляют собой большую группу строительных конструкций, получивших широкое распространение в строительной практике.

Фермы - это конструкции, в которых наиболее рационально используются прочностные свойства материала и сравнительно легко решаются проблемы жесткости.

Расчет и проектирование таких конструкций имеют очень важное значение и представляют большой интерес для строительной практики.

Программа для ЭВМ составлена на алгоритмическом языке ФОРТРАН и предназначена для расчета плоских, статически определимых ферм на воздействие узловой статической нагрузки.

Количество узлов, стержней, опорных связей фермы, а также количество вариантов загружения могут быть произвольными.

Результатами расчетов являются усилия в стержнях и реакции опор.

Программа предназначена для выполнения расчетов студентами ПГУ в процессе курсового и дипломного проектирования.

Программа может быть использована и в проектных организациях при проектировании и расчете плоских статически определимых ферм.

1 Расчет плоских статически определимых ферм на ЭВМ

1.1 Идея расчета, реализованная в программе для ЭВМ

Из курса строительной механики известно, что для плоских статически определимых, неизменяемых и неподвижных ферм выполняется условие

$$2 \times NU = NS + NOS, \tag{1.1}$$

где NU – общее число узлов фермы;

NS – общее число стержней фермы;

NOS – общее число опорных связей фермы.

Для каждого узла плоской фермы можно составить два уравнения равновесия. Общее число уравнений равновесия узлов будет равно ($2 \times NU$). Общее число неизвестных, подлежащих определению, равно суммарному количеству неизвестных усилий в стержнях фермы и неизвестных опорных реакций, т.е. (NS + NOS).

Таким образом, согласно выражению (1.1) для определения неизвестных величин можно составить соответствующее количество уравнений. Общую систему разрешающих уравнений удобно представить в матричной форме

$$[A] \times [NR] = [P], \tag{1.2}$$

где A (NA, NA) – квадратная матрица коэффициентов при неизвестных в системе разрешающих уравнений;

NR (NA, NV) – матрица подлежащих определению неизвестных усилий в стержнях N и неизвестных реакций опор R;

P (NA, NV) – матрица нагрузок, действующих на узлы фермы.

Переменные NA и NV определяют соответственно общее число уравнений и количество вариантов загружений.

В программе для ЭВМ на основании предварительно введенных исходных данных автоматически составляется и решается система уравнений равновесия узлов фермы.

Решение системы уравнений дает значения неизвестных усилий в стержнях фермы и значения опорных реакций.

2 Подготовка исходных данных для расчета

- 2.1 Изображается расчетная схема фермы с привязкой к прямоугольной системе координат;
 - 2.2 Нумеруются узлы;
 - 2.3 Нумеруются стержни;
 - 2.4 Нумеруются опорные стержни;
- 2.5 Устанавливаются количество вариантов загружений и коли чество узловых сил для каждого варианта загружения;
- 2.6 Определяется общее количество узловых сил во всех вариантах загружения;
- 2.7 Узловая сила считается положительной, если ее направление совпадает с положительным направлением соответствующей координатной оси.

Приняты следующие обозначения переменных и массивов:

NU - количество узлов фермы;

NS - количество стержней фермы;

NOS - количество опорных стержней;

NP - общее количество узловых сил во всех вариантах загружения;

NV - количество вариантов загружения;

NA - общее число неизвестных, равное суммарному количеству усилий в стержнях и опорных стержнях фермы.

XY (NU, 2) - матрица координат узлов;

MIS (NS, 2) - матрица индексов стержней фермы;

MIOS (NOS, 2) - матрица индексов опорных стержней;

MIP (NP, 3) - матрица индексов узловых сил;

PU (NP) - вектор (матрица-столбец) узловых сил;

P (NA, NV) - матрица узловых сил для всех загружений;

А (NA, NA) - матрица коэффициентов системы уравнений.

Матрица координат узлов XY (NU, 2) – имеет количество строк, равное количеству узлов фермы и два столбца. Номер строки матрицы соответствует номеру узла фермы. В первом столбце находится координата соответствующего узла по оси X, а во втором – координата этого же узла по оси Y.

Матрица индексов стержней фермы MIS (NS, 2) — имеет количество строк, равное количеству стержней фермы, и два столбца. Номер строки определяет номер стержня. В первом столбце записывается номер узла, где находится начало соответствующего стержня, а во втором столбце записывается номер узла, где находится конец стержня.

Матрица индексов опорных стержней MIOS (NOS, 2) – имеет количество строк, равное количеству опорных стержней, и два столбца. Номер строки соответствует номеру опорного стержня. В первом столбце записывается номер узла, где находится опорный стержень, а во втором столбце записывается цифра, определяющая направление опорного стержня. Если опорный стержень горизонтальный, записывается цифра 1, если опорный стержень вертикальный, записывается цифра 2.

Матрица индексов узловых сил MIP (NP, 3) - имеет число строк, равное количеству ненулевых узловых сил во всех вариантах загружения и три столбца. Номер строки соответствует номеру узловой силы. В первом столбце записывается номер варианта загружения, во втором столбце записывается номер узла, в котором приложена искомая сила.

Цифра в третьем столбце - индикатор направления силы. Если сила горизонтальна, то записывается цифра 1, если сила вертикальна - записывается цифра 2.

Вектор узловых сил PU (NP) – содержит значения ненулевых узловых сил во всех вариантах загружения. При этом положительными считаются силы, направления которых совпадают с положительным направлением соответствующей координатной оси.

Матрица узловых сил для всех загружений Р (NA, NV) - имеет число строк, равное общему количеству неизвестных, и число столбцов, равное количеству вариантов загружений. Эта матрица формируется компьютером. Матрица коэффициентов при неизвестных разрешающей системы уравнений А (NA, NA) также формируется компьютером.

3 Порядок ввода исходных данных

- 3.1 Ввод переменных NU, NS, NOS, NV, NP производится по -формату (20I3).
- 3.2 Ввод матрицы координат узлов XY (NU, 2) по формату (8F8.3).
- 3.3 Ввод матрицы индексов стержней MIS (NS, 2) по формату (20I3).
- 3.4 Ввод матрицы индексов опорных стержней MIOS (NOS, 2) по формату (20I3).
- 3.5 Ввод матрицы индексов ненулевых узловых сил MIP (NP, 3) по формату (20I3).

 $3.6~{
m B}$ вод матрицы ненулевых узловых сил ${
m PU}$ (NP) - по формату (8F8.2).

Примечание: Ввод всех матриц осуществляется по столбцам!

4 Пример расчета арочной фермы

4.1 Расчетная схема арочной фермы

Исходные данные для расчета арочной фермы. Опоры шарнирно-неподвижные. Количество шарниров 5, количество стержней 10.

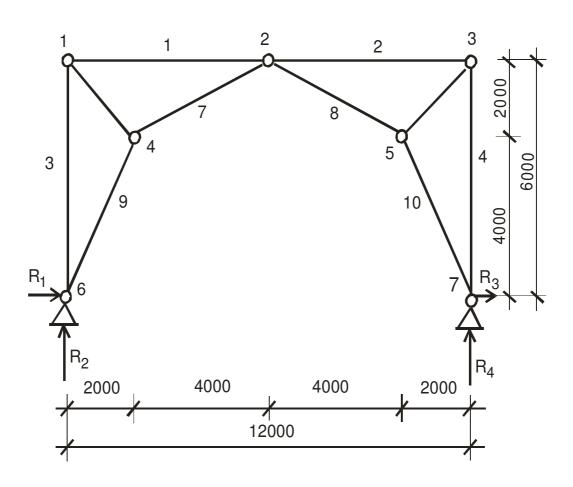


Рисунок 1 – Схема арочной фермы

4.2 Схемы загружения арочной фермы

Существует два вида загружения: вертикальная, горизонталь - ная. На расчетную схему арочной фермы воздействует вертикальная постоянная нагрузка.

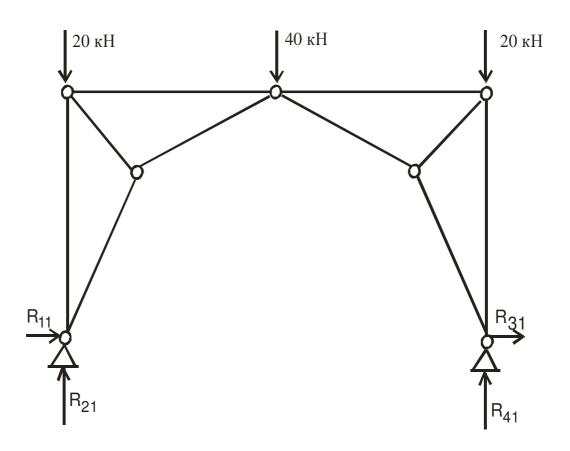


Рисунок 2 – Схема загружения 1

На расчетную схему арочной фермы воздействует горизонталь - ная постоянная нагрузка.

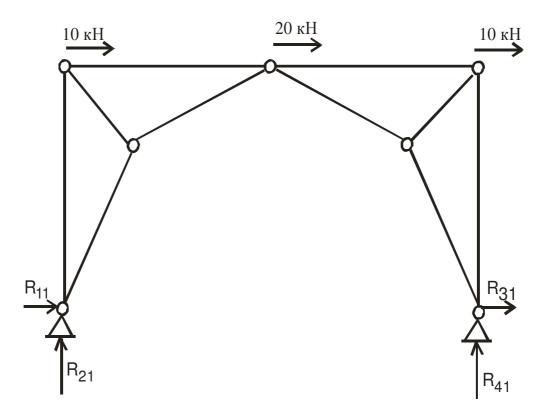


Рисунок 3 – Схема загружения 2

На основании изображенных выше расчетной схемы и схем загружения фермы устанавливаем значения переменных NU, NS, NOS, NV и NP:

- количество узлов NU = 7;
- количество стержней NS = 10;
- количество опорных стержней NOS = 4;
- количество вариантов загружения NV = 2;
- количество ненулевых узловых сил NP = 6.

Значения переменных NU, NS, NOS, NV и NP определяют размеры матриц XY (NU, 2), MIS (NS, 2), MIOS (NOS, 2), MIP (NP, 3) и PU (NP). Запишем размеры этих матриц для рассматриваемого примера:

- матрица координат узлов фермы ХҮ (7,2);
- матрица индексов стержней фермы MIS (10, 2);
- матрица индексов опорных связей MIOS (4, 3);
- матрица индексов узловых сил МІР (6, 2);
- матрица-столбец ненулевых узловых сил PU (6).

В развернутом виде указанные матрицы имеют следующую структуру

Таблица 1 – Mатрицы XY, MIS, MIOS

- 0000000000000000000000000000000000000			
Матрица			
XY(7, 2)			
X Y			
0.000	6.000		
6.000	6.000		
12.000	6.000		
2	4		
10 4			
0	0		
12	0		

Матрица		
(10, 2)		
Начало	Конец	
стержня	стержня	
1	2	
2	3	
6	1	
7	3	
1	4	
5	3	
4	2	
2	5	
6	4	
5	7	

Матрица		
MIOS (4, 2)		
Узел	Направ-	
	ление	
6	1	
6	2	
7	1	
7	2	

Таблица 2 – Узловая нагрузка фермы MIP, PU

Матрица MIP (6, 3)			
Вариант	Номер	Индикатор	
загрузки	узла, в котором направле		
	приложена сила	узловой силы	
1	1	2	
1	2	2	
1	3	2	
2	1	1	
2	2	1	
2	3	1	

Матрица PU (6)
Значение
узловых сил
(кН)
-20.00
-40.00
-20.00
10.00
20.00
10.00

4.3 Расчет фермы на ЭВМ

По исходным данным, подготовленным выше, произведен расчет арочной фермы.

Результаты расчета фермы, взятой в качестве примера, приводятся ниже. Результаты расчетов, как уже было сказано выше, представляют собой усилия в стержнях и значения опорных реакций.

Положительное значение продольного усилия в стержне соответствует растяжению, отрицательное значение продольного усилия - сжатию.

За положительное направление опорной реакции принято направление, совпадающее с положительным направлением соответствующей координатной оси.

Это означает, что положительная горизонтальная опорная реакция направлена вправо, а отрицательная – влево. Положительная вертикальная реакция опоры направлена вверх, а отрицательная - вниз.

Ниже приводятся результаты расчетов арочной фермы. В начале распечатаны предварительно введенные исходные данные, что позволяет проверить правильность подготовки и ввода информации, необходимой для расчета.

Выведены на печать усилия в стержнях и опорные реакции для каждого варианта загружения фермы.

Для лучшего понимания сути задачи о расчете плоской статически определимой фермы на ЭВМ для рассмотренной арочной фермы приводится в развернутом виде структура основных матриц, входящих в матричное уравнение 1.2.

5 Пример расчета двускатной фермы покрытия

5.1 Расчетная схема двускатной фермы

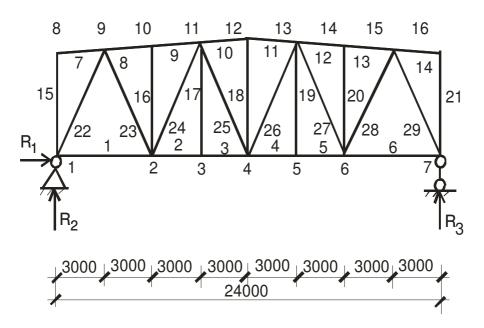


Рисунок 4 – Схема двускатной фермы

5.2 Схемы загружения фермы

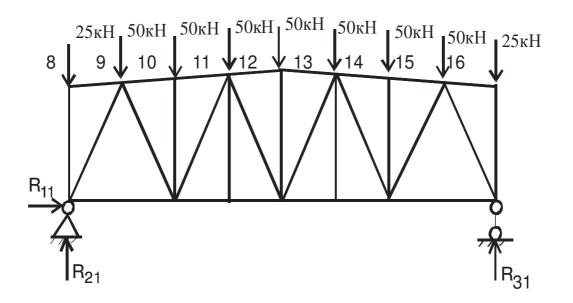


Рисунок 5 – Схема загружения 1

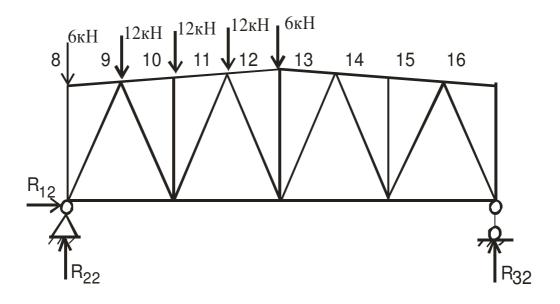


Рисунок 6 – Схема загружения 2

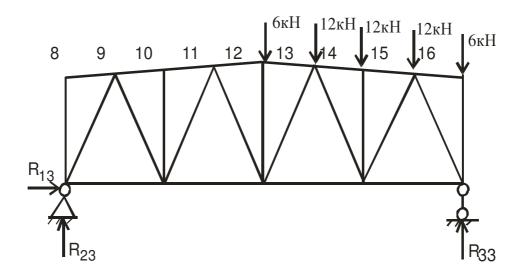


Рисунок 7 – Схема загружения 3

На основании изображенных выше расчетной схемы и схем загружения фермы установлено, что:

- количество узлов фермы NU = 16;
- количество стержней фермы NS = 29;
- количество опорных стержней фермы NOS = 3;
- количество вариантов загружения фермы NV = 3;
- количество ненулевых узловых сил NP = 19.

Таблица 3 – Матрицы XY, MIS, MIOS

$N_{\underline{0}}$	Матрица XY			Матрица	
Π/Π	(16,2)		MIS (29, 2)		(29, 2)
	X	Y		Начало	Конец
				стержня	стержня
1	2	3		1	2
1	0.000	0.000		1	2
2	6.000	0.000		2	3
3	9.000	0.000		3	4
4	12.000	0.000		4	5
5	15.000	0.000		5	6
6	18.000	0.000		6	7
7	24.000	0.000		8	9
8	0.000	2.200		9	10
9	3.000	2.575		10	11
10	6.000	2.950		11	12
	•			:	•

Матрица		
MIOS(3, 2)		
Узел Направле		
	ние	
1	2	
1	1	
1	2	
7	2	

Продолжение таблицы 3

1100	должение та	олицы 5
1	2	3
11	9.000	3.325
12	12.000	3.700
13	15.000	3.325
14	18.000	2.950
15	21.000	2.575
16	24.000	2.200
17		
18		
19		
20		
21		

1	13
12	13
13	14
14	15
15	16
1	8
2	10
1 2 3 4 5 6 7	11
4	12
5	13
6	14
7	16
1	9
9 2	2
2	11
11	4
4	13
13	6
6	15
15	7

Таблица 4 – Узловая нагрузка

Матрица		
MIP (19, 3)		
Вариант	Узел	Направление
загружения		узловой силы
2	3	4
1	8	2
1	9	2
1	10	2
1	11	2
1	12	2
1	13	2
1	14	2
1	15	2
1	16	2
2	8	2
2	9	2
	МІН Вариант загружения 2 1 1 1 1 1 1 1 1 1 2	MIP (19, 3) Вариант загружения Узел 2 3 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 2 8

Матрица
PU (19)
Значение
узловой
силы
1
- 25,00
- 50,00
- 50,00
- 50,00
- 50,00
- 50,00
- 50,00
- 50,00
- 25,00
- 6,00
- 12,00

Продолжение таблицы 4									
1	2	3	4						
13	2	10	2						
14	2	11	2						
15	2	12	2						
16	3	13	2						
17	3	13	2						
18	3	14	2						
19	3	15	2						
20	3	16	2						

1
- 12,00
- 12,00
- 6,00
- 6,00
- 12,00
- 12,00
- 12,00
- 6,00

5.3 Расчет фермы на ЭВМ

По исходным данным, подготовленным выше, произведен расчет фермы.

Результаты расчета фермы, взятой в качестве примера, приводятся ниже. Результаты расчетов, как уже было сказано выше, представляют собой усилия в стержнях и значения опорных реакций.

Положительное значение продольного усилия в стержне соответствует растяжению.

За положительное направление опорной реакции принято направление, совпадающее с положительным направлением соответствующей координатной оси. Это означает, что положительная горизонтальная опорная реакция направлена вправо, а отрицательная — влево. Положительная вертикальная реакция опоры направлена вверх, а отрицательная - вниз.

Ниже приводятся результаты расчета двускатной фермы. В начале распечатаны предварительно введенные исходные данные, что позволяет проверить правильность подготовки и ввода информации, необходимой для расчета. Далее выведены на печать усилия в стержнях и опорные реакции для каждого варианта загружения фермы.

5.4 Определение расчетных значений усилий в стержнях и расчетных значений опорных реакций

Вычисление расчетных значений усилий в стержнях и реакций опор. При определении реакции составляют три уравнения равновесия для всей формы в целом используют существующие методы сечения.

Таблица 5 – Вычисление расчетных значений, реакции опор

No	ица 5 – вычисл Стержни		Усилия	Расчетные усилия			
п/п	фермы и	ОТ	от от		растяже	сжатие	
11/11	опорные	постоян	снега	снега	ние	Сжатис	
	связи	ной	слева	справа	IIIIC		
	СБЛЭП	нагрузки	Слова	Справа			
1	2	3	4	5	6	7	
2	N_1	203,884	34,951	13,981	252,816	-	
3	N_2	338,346	48.722	32,481	419.549	-	
4	N_3	338,346	48.722	32.481	419.549	-	
5	N_4	338.346	32.481	48.722	419.549	-	
6	N_5	338.346	32.481	48.722	419.549	_	
7	N_6	203.884	13.981	34.951	252.816	-	
8	N_7	0.000	0.000	0.000	-	-	
9	N_8	-307.459	-49.193	-24.597	-	- 381.249	
10	N_9	-307.459	-49.193	-24.597	-	-381.249	
11	N_{10}	-326.848	-39.222	-39.222	-	-405.292	
12	N ₁₁	-326.848	-39.222	-39.222	-	-405.292	
13	N ₁₂	-307.459	-24.597	-49.193	-	-381.249	
14	N ₁₃	-307.459	-24.597	-49.193	-	-381.249	
15	N ₁₄	0.000	0.000	0.000	-	-	
16	N_{15}	-25.000	-6.000	0.000	-	-31.000	
17	N_{16}	-50.000	-12.000	0.000	-	-62.000	
18	N_{17}	0.000	0.000	0.000	-	-	
19	N_{18}	31.081	3.730	3.730	38.541	-	
20	N_{19}	0.000	0.000	0.000	-	-	
21	N_{20}	-50.000	0.000	-12.000	-	-62,000	
22	N_{21}	-25,000	0,000	-6,000	-	-31,000	
23	N_{22}	-268,688	-46,061	-18,424	-	-333,173	
24	N_{23}	133,368	18,268	13,740	165,376	-	
25	N ₂₄	-49,652	0,137	-12,053	-	-61,705	
26	N ₂₅	-20,931	-14,634	9,610	_	-35,565	
27	N_{26}	-20,931	9,610	-14,634	-	-35,565	
28	N_{27}	-49,652	-12,053	0,137	_	-61,705	
29	N_{28}	133,368	13,740	18,268	165,376	-	
30	N_{29}	-268,688	-18,424	-46,061	-	-333,173	
31	R_1	0,000	0,000	0,000	-	-	
32	R_2	200,000	36,000	12,000	248,000	-	
33	R_3	200,000	12,000	36,000	248,000	-	

3.5 Исходные данные для расчета плоской статически определимой фермы

Расчет фермы вычисляется тремя методами: метод вырезания узлов, метод проекции, метод моментной точки.

Наиболее целесообразным при расчете первых стержней, опорных реакции является метод моментной точки.

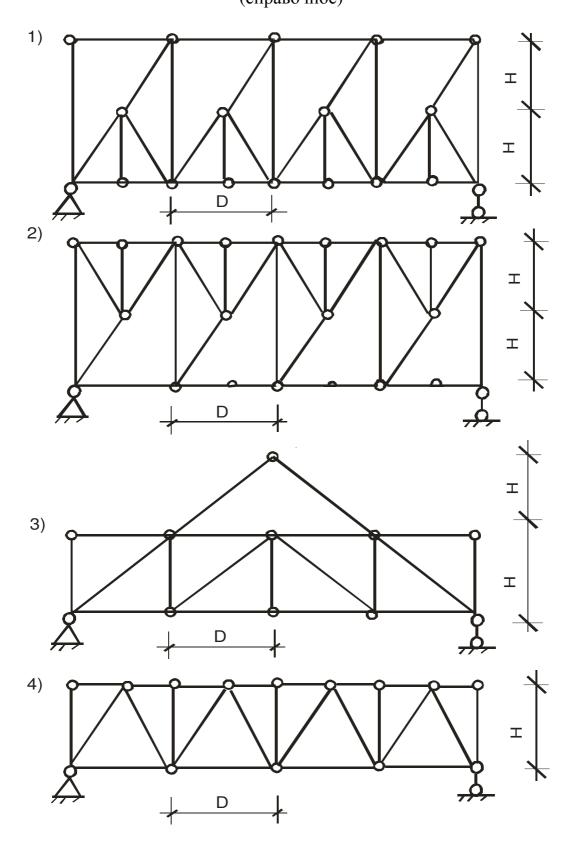
Приведены варианты исходных данных для расчета ферм, где D – растояние между узлами любого пояса фермы, H – высота фермы.

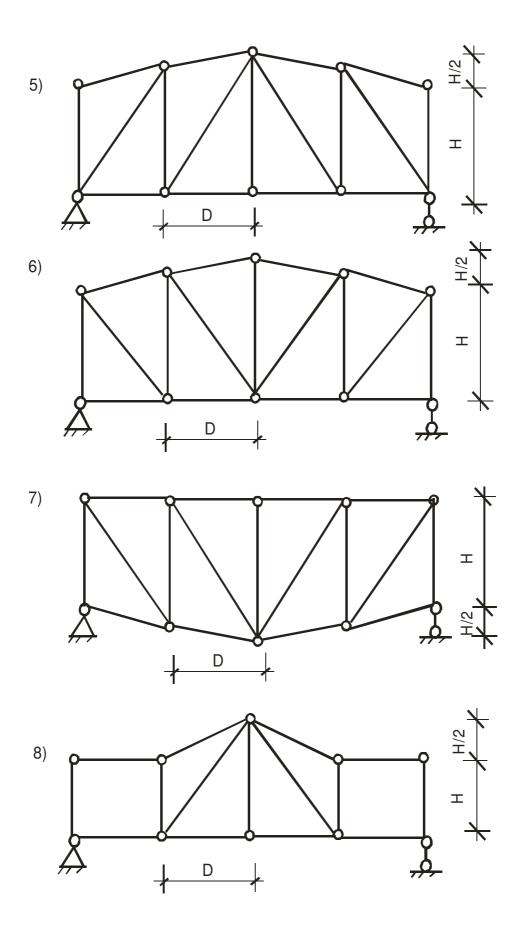
Содержание работы:

- а) Определить усилия в стержнях фермы графически от постоянной и временной нагрузок
 - б) Определить расчетные усилия в стержнях фермы
 - в)Построить линии влияния

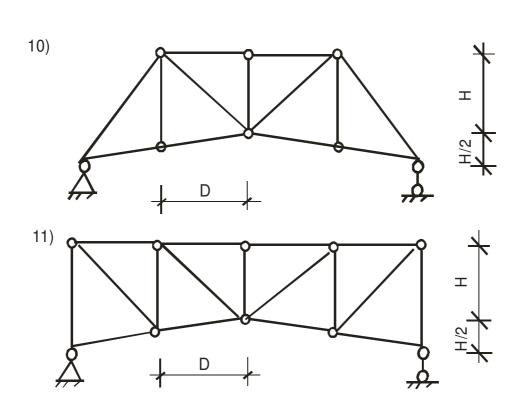
Таблица 1 – Исходные данные 1

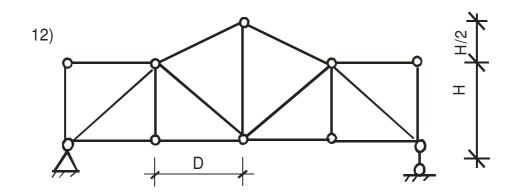
1	№п/п	1	2	3	4	5	6	7	8	9	0
2	2	3	4	5	6	7	8	9	10	11	12
3	D (M)	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0	6,6
4	Н (м)	2,5	3,0	3,5	4,0	4,6	5,0	6,6	5,0	4,6	4,0
5	N _{панели}	1	2	3	4	2	3	4	1	2	3


Таблица 2 – Исходные данные 2


1	№п/п	1	2	3	4	5	6	7	8	9	0
2	2	3	4	5	6	7	8	9	10	11	12
3	нагрузка	15	20	30	40	50	60	70	80	90	115
	постоянная										
4	нагрузка	105	90	80	70	60	50	40	30	20	15
	временная										

Литература


- 1 Александров А.В. Сопротивление материалов. М.: Высшая школа, 2000. 560 с.
- 2 Дарков А.В., Кузнецов В.И. Строительная механика. М.: Высшая школа, 1989. 426 с.
 - 3 Калиткин Н.Н. Численные методы. M.: Hayka, 1998. 471 c.
- 4 Масленников А.М., Егоян А.Г. Основы строительной механики для архитекторов. Л.: Издательство ленинградского университета, 1988.-264 с.
- 5 Мухин Н.В., Першин А.И. Статика сооружений. М.: Высшая школа., 1980. 343 с.
- 6 Синицын С.Б., Ванюшенков М.Г. Матричные методы и МКЭ решение задач строительной механики. М.: Наука, 1986. 124 с.
- 7 Щуп А.Т. Решение инженерных задач на ЭВМ. М.: Высшая школа, 1986. 153 с.


Приложение А (справочное)

