MINISTRY of EDUCATION And SCIENCES of
REPUBLIC KAZAKHSTAN
KAZAKH NATIONAL PEDAGOGICAL UNIVERSITY
after ABAY

Physics and Mathematics faculty

EDUCATIONAL AND METHODICAL COMPLEX FOR
STUDENTS OF THE DISCIPLINE

«Database and information system»

for the students of the specialty -
5B11100 — «Computer science»

Almaty, 2012

The author
Khalikova G.Z., candidate of pedagogical science., docent, professor of Kazakh
national pedagogical university named after Abai

|
|

Educational and methodical complex for students of the discipline « Database and
information system»
for the students of the specialty 5B11100 — «Computer science». — Almaty:KazNPU
named after Abay, 2012. — p.114

Educational and methodical complex for students of the discipline is formed on the
basis of:
= State general compulsory standard of Higher professional education on the
specialty 050111 — «Computer science»;
= Schooling plan on specialty 050111 — «Computer science», approved
« »

©Kazakh national pedagogical university after Abay, 2012

Contents

No Title of the document

. Syllabus discipiine for students

. Thesis of the lectures

. Laboratory sessions

. Themes for tutorial lessons

. Self-control

. Tasks for self-control and preparing for the examination
. Literature

. Glossary

[BN B R R R S N

Page

62

106
107
110
112
113

1.Syllabus discipline for students

1. Information about discipline

Title of discipline discipline code Quantity of credits Course - 2,
«Database and information 3 semester - 3
system»
Title of speciality ‘ Speciality code Chair Faculty
Computer Science 5B011100 Computer Science FMF

| and applied
| mathematics

Form of the education Teaching Language

Day department English

Lecture Time and room — according to the schedule

Laboratory sessions

Independent work
student with
supervisor

Counsultation according to the schedule

Rating control schedule

Professor Khalikova G.Z. | Job telephone: 2611576, Email: xgulira@rambler.ru

Chair holder of computer science and applied mathematics,
doctor of the physical a}nf(} m;tlzematical sciences, professor

Berdyshev A.S. . /%/77/75: cetty ~
2. Description of the discipline /

Databases lie at the heart of modern commercial application development. Their use extends
beyond this to many applications and environments where large amounts of data are be stored for
efficient update and retrieval. Their principles and fundamental techniques are being extended today
to the Web and to novel kinds of data, like XML.

The purpose of this course is to provide an introduction to the principles of database
systems; database design, covering the entity relationship model; the basic principle of a database,
information systems, the database management system conceptual concept formation; mathematical
models describing the database, interpret the principle of database design also consider the basic
technology which intended for databases.

The main objectives:

to know the values of the main constituent databases and database management systemn, show
implemented methods the corresponding values in the real system programs, know the theoretical
foundations of database and direct the process of designing.

Student should know:

- database design, covering the entity relationship model;

- to cover the relational data model, relational algebra and SQL;

- to show how database requirements are captured using entity-relationship models, and the
definition of databases and their queries in the relational model;

- Relational algebra and calculus, as are the normal forms for expressing relationships subject
to dependencies;

- The SQL query language;

- The primary data structures and strategies for efficient querying of a database.

At the end of the course the student will be able to:

- Understand the relational model, and know how to translate requirements captured in an
Entity-Relationship diagram into a relational schema;

- Be able to reason about dependencies in a relational schema;

- Understand normal form schemas, and the decomposition process by which normal forms
are obtained;

- Use relational query languages such as SQL;

- Understand equivalences within relational algebra and their use in query optimization;

- Understand indexing and its role in query plans;

- Be able to create database-driven web interfaces.
3. Prior requisite of disciplines

- informatics,

- programming language,

- discrete mathematics;

- Information and communication technologies in education.
4. Post requisite of discipline:

- computer systems and telecommunications;

- computer architecture;

- theory of language programming and translation methods;

- Theoretical bases of protection of information.

5 Calendar-themed background.

Ne .
i e |
& —_ =
£ |3 ° 2| 3
3 - £l £
. . . B [P .-\D Q ES =N
Name those disciplines 55|32 = 2| 2
o O © -
o £ £ 2
R A
1. Database and Information system
I | Introduction to database. Characteristics of | 5 | 3 3 9
Databases terminology.
2 | Information systems architecture
File server system. Database server. Local
;) . . 2 2 1 3 3 9
information systems. Remoted information
systems
3 | Database management system 3 2 1 3 9
4 | Modeling database 4 4 1 S 5 15
5 | Data model 5,6 4 1 5 5 15
6 | Relational model. Relational algebra, relational 78) ! 3 3 9
account. Normal form
7 | Information systems in networks 9 2 . 3 3 9
8 | Usage database 10 2 1 3 3 9
2. The modern technology to create database
9 | Analyze the current technology which materialize 1 4 2 7 ‘ 7 20
database. Standards and languages. (MS SQL) l }
10 | MS Access Database Management system] 12 2 | 2 ‘ 3 ‘ 3 ‘ 10

11 | Object-oriented approach. Create databases in the | 13,14,
o 4 3 7 7 21
Delphi environment 15
[[Total: 30 [15 [45 [45 [135

laboratory sessions

F NeNe Theme and content of laboratory classes .
Equipment for
ILIL. Hours
laboratory classes
1 Create a table in the MS Access Database management 2
system. Establish a link between the tables ° g
2 Create query in the MS Access Database management _§ g 3
system S
3 Create forms in the MS Access Database management a £ 3
system § £
4 create a report in the MS Access Database management < gﬁ 3
system v §
5 create a macros and sheets in the MS Access Database = E 3
management system
6 Create databases in the Delphi environment 2
7 Create table. Create the table structure by programming.)
Table component
8 Way of removing the table in the form 2
. - - o
9 Create query in Delphi environment. SQL language NG
10 Create a query by using SQL Builder = 9
L
11 Create report in Delphi environment. Create a simple a
report 2
12 Create report in Delphi environment. To show auxiliary
and serial informations use TQRSysData component 3
Total: 30

6. literature

The main literature:
1. C.J. Date. An Introduction to Database Systems. 8th Edition. Addison-Wesley, 2000.-1072

2. G. Hansen, Hansen, J.// Databases: Design and Management. Translation, Moscow 1999.
3. Xomonenxo A.JL., Lsrankos B.M., Mansues M.I".// Basbl gaHubix. Yve6Hoe nocobue,

2002.

4. Xansikosa K.3. //MasimMerTep Kopsi x#aHe 0aHki. Oky kypansi. 2004 x. -160 6.
S. Stojanovic, T.A. (2007) Guidelines for Implementing Local Information Systems at the
Coast. COREPOINT and Cardiff University, Cardiff. http://corepoint.ucc.ie/Cpages/outputs.htm
Additional literature:
1. xettve P. podd, Ilon H. Baiin6epr SQL - moaxoe pykoBoacrso. Ilepesoa, Kues 1999r.

2. Haymosa M.A. Cucrembl yripasneHns 6azaMi JaHHbIX W 3HaHMI. Beicwas wikona, 1992r.
3. Huro C.M. IMpoektupoanue 6a3 naHHbIX. PUHAHCH 1 cTatucTHKa, 1990r.

4, Meitc C. Hcnoas3oBadue

nanHbIX.B Mupe xomnesrorepos, Ne 2, 1988.

sa3pika SQL obecrieunBaetT BO3MOXHOCTb OObeNMHEHHS 0a3

S. Jox.Maprur Opranusaums 6a3 JHaHHBIX B BBIUMCHUTENBHBIX cucTemax. M, Hayxa

1980r.
6. ®aponos B.B. [porpammuposanure 6a3 ganubix Ha Delphi 7. Y4ebnsiit kypc, 2005.
7. 3onorosa C. M. [lpaktuxym no Access. GuHanch! M cTatucTHka, Mocksa, 2000.

7. Assessment criteria

Ne Term constituents Mark (max points) Quantity Subtotal

1 Attendance, work at the lesson, 2 15 30
homework

2 Laboratory session | 30 ﬁT

3 | Colloquium 20 T

V Tasks for self-control 35 2 70

4 | Examination 100]] 100

Total 300

8. Teacher’s requirements

« Not to be late for sessions

» Not to deal with other deals

* To disconnect cellular telephone

» Not to miss sessions without good excuse
« To retake missed sessions

» Actively participate in the study process

* To be support feedback constructively

« To observe the time and be obligatory

2. Thesis of the lectures

Lessonl.
Theme of lecture:Introduction to database. Characteristics of Databases
terminology.

Plan:

Description the importance of data and databases.
Database concept

Understanding Database Terminology

A database is an organized collection of data. The data are typically organized
to model relevant aspects of reality (for example, the availability of rooms in hotels),
in a way that supports processes requiring this information (for example, finding a
hotel with vacancies).

The term database is correctly applied to the data and their supporting data
structures, and not to the database management system (DBMS). The database data
collection with DBMS is called a database system.

The term database system implies that the data are managed to some level of
quality (measured in terms of accuracy, availability, usability, and resilience) and this
in turn often implies the use of a general-purpose database management system
(DBMS). A general-purpose DBMS is typically a complex software system that
meets many usage requirements to properly maintain its databases which are often
large and complex. The utilization of databases is now so widespread that virtually
every technology and product relies on databases and DBMSs for its development
and commercialization, or even may have DBMS software embedded in it. Also,
organizations and companies, from small to large, depend heavily on databases for
their operations.

Well known DBMSs include FoxPro, IBM DB2, Linter, Microsoft Access,
Microsoft SQL Server, MySQL, Oracle, PostgreSQL and SQLite. A database is not
generally portable across different DBMS, but different DBMSs can inter-operate to
some degree by using standards like SQL and ODBC together to support a single
application built over more than one database. A DBMS also needs to provide
effective run-time execution to properly support (e.g., in terms of performance,
availability, and security) as many database end-users as needed.

A way to classify databases involves the type of their contents, for example:
bibliographic, document-text, statistical, or multimedia objects. Another way is by
their application area, for example: accounting, music compositions, movies,
banking, manufacturing, or insurance.

Database concept

The database concept has evolved since the 1960s to ease increasing difficulties
in designing, building, and maintaining complex information systems (typically with
many concurrent end-users, and with a large amount of diverse data). It has evolved
together with database management systems which enable the effective handling of
databases. Though the terms database and DBMS define different entities, they are
inseparable: a database's properties are determined by its supporting DBMS. The
Oxford English dictionary cites™ " **““/l 3 1962 technical report as the first to use
the term "data-base." With the progress in technology in the areas of processors,
computer memory, computer storage and computer networks, the sizes, capabilities,
and performance of databases and their respective DBMSs have grown in orders of
magnitudes. For decades it has been unlikely that a complex information system can
be built effectively without a proper database supported by a DBMS. The utilization
of databases is now spread to such a wide degree that virtually every technology and

8

product relies on databases and DBMSs for its development and commercialization,
or even may have such embedded in it. Also, organizations and companies, from
small to large, heavily depend on databases for their operations.

No widely accepted exact definition exists for DBMS. However, a system needs
to provide considerable functionality to qualify as a DBMS. Accordingly its
supported data collection needs to meet respective usability requirements (broadly
defined by the requirements below) to qualify as a database. Thus, a database and its
supporting DBMS are defined here by a set of general requirements listed below.
Virtually all existing mature DBMS products meet these requirements to a great
extent, while less mature either meet them or converge to meet them.

Understanding Database Terminology

A computer cannot process data unless it is organized in special ways; into
characters, fields, records, files and databases.

A character is the most basic element of data that can be observed and
manipulated. Behind it are the invisible data elements we call bits and bytes, referring
to physical storage elements used by the computer hardware. A character is a single
symbol such as a digit, letter, or other special character (e.g., $, #, and ?).

Field

A field contains an item of data; that is, a character, or group of characters that
are related. For instance, a grouping of related text characters such as "John Smith”
makes up a name in the name field. Let's look at another example. Suppose a political
action group advocating gun control in Pennsylvania is compiling the names and
addresses of potential supporters for their new mailing list. For each person, they
must identify the name, address, city, state, zip code and telephone number. A field
would be established for each type of information in the list. The name field would
contain all of the letters of the first and last name. The zip code field would hold all
of the digits of a person's zip code, and so on. In summary, a field may contain an
attribute (e.g., employee salary) or the name of an entity (e.g., person, place, or
event).

Record

A record is composed of a group of related fields. As another way of saying it, a
record contains a collection of attributes related to an entity such as a person or
product. Looking at the list of potential gun control supporters, the name, address, zip
code and telephone number of a single individual would constitute a record. A
payroll record would contain the name, address, social security number, and title of
each employee.

Database File

As we move up the ladder, a database file is defined as a collection of related
records. A database file is sometimes called a table. A file may be composed of a
complete list of individuals on a mailing list, including their addresses and telephone
numbers. Files are frequently categorized by the purpose or application for which

9

they are intended. Some common examples include mailing lists, quality control files,
inventory files, or document files. Files may also be classified by the degree of
permanence they have. Transition files are only temporary, while master files are
much more long-lived.

Database

Organizations and individuals use databases to bring independent sources of
data together and store them electronically. Thus, a database is composed of related
files that are consolidated, organized and stored together. One collection of related
files might pertain to employee information. Another collection of related files might
contain sports statistics.

Organizations and individuals may have and use many different databases,
depending on the nature of the work involved. For example, a library database might
consist of several related, but separate, databases including book titles and author
names, book description, books on order, books checked out, and similar sets of
information. Most organizations have product information databases, customer
databases, and human resource databases that contain information about employees,
salaries, home address, stock purchase plans, and tax deduction information. In each
case, the data stored in a database is independent from the application programs
which use and process the data.

Data Management System

Data management systems are used to access and manipulate data in a database.
A database management system is a software package that enables users to edit, link,
and update files as needs dictate. Database management systems will be discussed in
greater detail in another lesson.

Key

In order to track and analyze data effectively, each record requires a unique
identifier or what is called a key. The key must be completely unique to a particular
record just as each individual has a unique social security number assigned to them.
In fact, social security numbers are often used as keys in large databases. You might
think that the name field would be a good choice for a key in a mailing list. However,
this would not be a good choice because some people might have the same name. A
key must be identified or assigned to each record for computerized information
processing to function correctly. An existing field may be used if the entries are
entirely unique, such as a social security or telephone number. In most cases, a new
field will be developed to hold a key, such as a customer number or product number.

Lesson 2.
Theme of lecture:Information systems architecture
Plan:
File server system.
Database server.
Local information systems.
Remoted information systems
10

Today's database professionals face several options when considering
architectures in which to employ to address the various needs of their employers
and/or clients. The following text will provide an overview of three main categores
of database architectures and their sub-categories, as well as offer some insight into
the benefits of each.

Application Logic

Database architectures can be distinguished by examining the way application
logic is distributed throughout the system. Application logic consists of three
components: Presentation Logic, Processing Logic, and Storage Logic.

The presentation logic component is responsible for formatting and presenting
data on the user's screen The processing logic component handles data processing
logic, business rules logic, and data management logic. Finally, the storage logic
component 1s responsible for the storage and retrieval from actual devices such as a
hard drive or RAM.

By determining which tier(s) these components are processed on we can get a
good idea of what type of architecture and subtype we are dealing with.

One Tier Architectures

Imagine a person on a desktop computer who uses Microsoft Access to load up a
list of personal addresses and phone numbers that he or she has saved in MS
Windows' “My Documents” folder. This is an example of a one-tier database
architecture. The program (Microsoft Access) runs on the user's local machine, and
references a file that is stored on that machine's hard drive, thus using a single
physical resource to access and process information.

Another example of a one-tier architecture is a file server architecture. In this
scenario, a workgroup database is stored in a shared location on a single machine.
Workgroup members use a software package such as Microsoft Access to load the
data and then process it on their local machine. In this case, the data may be shared
among different users, but all of the processing occurs on the local machine.
Essentially, the file-server is just an extra hard drive from which to retrieve files.

Yet another way one-tier architectures have appeared is in that of mainframe
computing. In this outdated system, large machines provide directly connected
unintelligent terminals with the means necessary to access, view and manipulate data.
Even though this is considered a client-server system, since all of the processing
power (for both data and applications) occurs on a single machine, we have a one-tier
architecture.

One-tier architectures can be beneficial when we are dealing with data that is
relevant to a single user (or small number of users) and we have a relatively small
amount of data. They are somewhat inexpensive to deploy and maintain.

Two Tier Client/Server Architectures

A two-tier architecture is one that is familiar to many of today's computer users.
A common implementation of this type of system is that of a Microsoft Windows
based client program that accesses a server database such as Oracle or SQL Server.

11

R |

Users interact through a GUI (Graphical User Interface) to communicate with the
database server across a network via SQL (Structured Query Language).

In two-tier architectures it is important to note that two configurations exist. A
thin-client (fat-server) configuration exists when most of the processing occurs on the
server tier. Conversely, a fat-client (thin-server) configuration exists when most of
the processing occurs on the client machine.

Another example of a two-tier architecture can be seen in web-based database
applications. In this case, users interact with the database through applications that
are hosted on a web-server and displayed through a web-browser such as Internet
Explorer. The web server processes the web application, which can be written in 2
language such as PHP or ASP. The web app connects to a database server to pass
along SQL statements which in tumn are used to access, view, and modify data. The
DB server then passes back the requested data which is then formatted by the web
server for the user.

Although this appears to be a three-tier system because of the number of
machines required to complete the process, it is not. The web-server does not
normally house any of the business rules and therefore should be considered part of
the client tier in partnership with the web-browser.

Two-tier architectures can prove to be beneficial when we have a relatively
small number of users on the system (100-150) and we desire an increased level of
scalability.

Client Applicanon ¢ GUI Datadase Server
.
Visusd Basic, Visual Oracle, Sybase, M SQL
C++, Access Server

Figure 1. Two-Tier Client-Server Architecture 1

g —
4+—>» ‘
Web Browser Web Server Datsbase Berver

Internet Explorer, Qracle, Sybsse, M8 SQL
Netscape HIML Server
Pages

Figure 2. Web-Based, Two-Tier Client-Server Architecture
N-Tier Client/Server Architectures

Most n-tier database architectures exist in a three-tier configuration. In this
architecture the client/server model expands to include a middle tier (business tier),

12

which is an application server that houses the business logic. This middle tier
relieves the client application(s) and database server of some of their processing
duties by translating client calls into database queries and translating data from the
database into client data in return. Consequently, the client and server never talk
directly to one-another.

A variation of the n-tier architecture is the web-based n-tier application. These
systems combine the scalability benefits of n-tier client/server systems with the rich
user interface of web-based systems.

Because the middle tier in a three-tier architecture contains the business logic,
there is greatly increased scalability and isolation of the business logic, as well as
added flexibility in the choice of database vendors.

-5 Network
1

£
Client Application Application Server Databsse Server |
Standard Protocol: IMid dle ware)Database DBMS: Oricle,
HTML, REC Protocol, ODBC, Business MysQL, MS 8QL

Ruks

Figure 3. Three-Tier Client-Server Architecture

HITP Network 1 ewok | T
e, 4> | —n»)| ——

Web Browser Wed Hervey Application Server Database Server
Internet Explorer, Middle waredDatabase Oracle, Sybase, ME SQL
Hetscape HIML Protocol: ODBC, 8QL, Berver

Fages JDBC

Figure 4. Web-Based, Three-Tier Client Server Architecture

File server

In computing, a file server is a computer attached to a network that has the
primary purpose of providing a location for shared disk access, i.e. shared storage of
computer files (such as documents, sound files, photographs, movies, images,
databases, etc.) that can be accessed by the workstations that are attached to the same
computer network. The term server highlights the role of the machine in the client—
server scheme, where the clients are the workstations using the storage. A file server
is not intended to perform computational tasks, and does not run programs on behalf
of its clients. It is designed primarily to enable the storage and retrieval of data while
the computation is carried out by the workstations.

File servers are commonly found in schools and offices, where users use a LAN
to connect their client computers.

Types of file servers

13

A file server may be dedicated or non-dedicated. A dedicated server is designed
specifically for use as a file server, with workstations attached for reading and writing
files and databases.

File servers may also be categorized by the method of access: Internet file
servers are frequently accessed by File Transfer Protocol (ETP) or by HTTP (but are
different from web servers, that often provide dynamic web content in addition to
static files). Servers on a LAN are usually accessed by SMB/CIFS protocol
(Windows and Unix-like) or NFS protocol (Unix-like systems).

Database servers, that provide access to a shared database via a database device
driver, are not regarded as file servers.

Design of file servers

In modem businesses the design of file servers is complicated by competing
demands for storage space, access speed, recoverability, ease of administration,
security, and budget. This is further complicated by a constantly changing
environment, where new hardware and technology rapidly obsolesces old equipment,
and yet must seamlessly come online in a fashion compatible with the older
machinery. To manage throughput, peak loads, and response time, vendors may
utilize queuing theory[l] to model how the combination of hardware and software
will respond over various levels of demand. Servers may also employ dynamic load
balancing scheme to distribute requests across various pieces of hardware.

The primary piece of hardware equipment for servers over the last couple of
decades has proven to be the hard disk drive. Although other forms of storage are
viable (such as magnetic tape and solid-state drives) disk drives have continued to
offer the best fit for cost, performance, and capacity.

Storage

Since the crucial function of a file server is storage, technology has been
developed to operate multiple disk drives together as a team, forming a disk array. A
disk array typically has cache (temporary memory storage that is faster than the
magnetic disks), as well as advanced functions like RAID and storage virtualization.
Typically disk arrays increase level of availability by using redundant components
other than RAID, such as power supplies. Disk arrays may be consolidated or
virtualized in a [storage area network] (SAN).

Network-attached storage

Network-attached storage (NAS) is file-level computer data storage connected
to a computer network providing data access to heterogeneous clients. NAS devices
specifically are distinguished from file servers generally in a NAS being a computer
appliance — a specialized computer built from the ground up for serving files — rather
than a general purpose computer being used for serving files (possibly with other
functions). In discussions of NASs, the term "file server" generally stands for a
contrasting term, referring to general purpose computers only.

As of 2010 NAS devices are gaining popularity, offering a convenient method
for sharing files between multiple computers.[2] Potential benefits of network-

14

attached storage, compared to non-dedicated file servers, include faster data access,
easier administration, and simple configuration.[3]

NAS systems are networked appliances containing one or more hard drives,
often arranged into logical, redundant storage containers or RAID arrays. Network
Attached Storage removes the responsibility of file serving from other servers on the
network. They typically provide access to files using network file sharing protocols
.such as NFS, SMB/CIES (Server Message Block/Common Internet File System), or
AFP.

Security

File servers generally offer some form of system security to limit access to files
to specific users or groups. In large organizations, this is a task usually delegated to
what is known as directory services such as openLDAP, Novell's eDirectory or
Microsoft's Active Directory.

These servers work within the hierarchical computing environment which treat
users, computers, applications and files as distinct but related entities on the network
and grant access based on user or group credentials. In many cases, the directory
service spans many file servers, potentially hundreds for large organizations. In the
past, and in smaller organizations, authentication can take place directly to the server
itself.

File Transfer Protocol

File Transfer Protocol (FTP) is a standard network protocol used to transfer files
from one host or to another host over a TCP-based network, such as the Internet.

FTP is built on a client-server architecture and uses separate control and data
connections between the client and the server.[l1] FTP users may authenticate
themselves using a clear-text sign-in protocol, normally in the form of a username
and password, but can connect anonymously if the server is configured to allow it.
For secure transmission that hides (encrypts) the username and password, and
encrypts the content, FTP is often secured with SSL/TLS ("FTPS"). SSH File
Transfer Protocol ("SFTP") is sometimes also used instead.

The first FTP client applications were command-line applications developed
before operating systems had graphical user interfaces, and are still shipped with
most Windows, Unix, and Linux operating systems[2][3]. Dozens of FTP clients and
automation utilities have since been developed for desktops, servers, mobile devices,
and hardware, and FTP has been incorporated into hundreds of productivity
applications, such as web page editors

Communication and data transfer

The server responds over the control connection with three-digit status codes in
ASCII with an optional text message. For example "200" (or "200 OK") means that
the last command was successful. The numbers represent the code for the response
and the optional text represents a human-readable explanation or request (e.g. <Need
account for storing file>).[1] An ongoing transfer of file data over the data connection
can be aborted using an interrupt message sent over the control connection.

Illustration of starting a passive connection using port 21

15

FTP may run in active or passive mode, which determines how the data
connection is established.[5] In active mode, the client creates a TCP control
connection to the server and sends the server the client's IP address and an arbitrary
client port number, and then waits until the server initiates the data connection over
TCP to that client IP address and client port number.[6] In situations where the client
is behind a firewall and unable to accept incoming TCP connections, passive mode
may be used. In this mode, the client uses the control connection to send a PASV
command to the server and then receives a server IP address and server port number
from the server,[6][5] which the client then uses to open a data connection from an
arbitrary client port to the server IP address and server port number received.[4] Both
modes were updated in September 1998 to support IPv6. Further changes were
introduced to the passive mode at that time, updating it to extended passive mode.[7]

Lesson 3.
Theme of lecture:Database management system

Plan:

An Intrduction to Database Management Systems

Define the term database management system (DBMS).

Describe the basic purpose and functions of a DBMS.

Discuss the advantages and disadvantages of DBMSs

A database is a collection of related files that are usually integrated, linked or
cross-referenced to one another. The advantage of a database is that data and records
contained In different files can be easily organized and retrieved using specialized
database management software called a database management system (DBMS) or
database manager.

A database management system is a set of software programs that allows users
to create, edit and update data in database files, and store and retrieve data from those
database files. Data in a database can be added, deleted, changed, sorted or searched
all using a DBMS. If you were an employee in a large organization, the information
about you would likely be stored in different files that are linked together. One file
about you would pertain to your skills and abilities, another file to your income tax
status, another to your home and office address and telephone number, and another to
your annual performance ratings. By cross-referencing these files, someone could
change a person's address in one file and it would automatically be reflected in all the
other files. DBMSs are commonly used to manage:

DBMSs and File Management Systems

Computerized file management systems (sometimes called file managers) are
not considered true database management systems because files cannot be easily
linked to each other. However, they can serve as useful data management functions
by providing a system for storing information in- files. For example, a file
management system might be used to store a mailing list or a personal address book.

16

When files need to be linked, a relational database should be created using database
application software such as Oracle, Microsoft Access, IBM DB2, or FileMaker Pro.

The Advantages of a DBMS

Improved availability: One of the principle advantages of a DBMS is that the
same information can be made available to different users.

Minimized redundancy: The data in a DBMS is more concise because, as a
general rule, the information in it appears just once. This reduces data redundancy, or
in other words, the need to repeat the same data over and over again. Minimizing
redundancy can therefore significantly reduce the cost of storing information on hard
drives and other storage devices. In contrast, data fields are commonly repeated in
multiple files when a file management system is used.

Accuracy: Accurate, consistent, and up-to-date data is a sign of data integrity.
DBMSs foster data integrity because updates and changes to the data only have to be
made in one place. The chances of making a mistake are higher if you are required to
change the same data in several different places-than if you only have to make the
change in one place.

Program and file consistency: Using a database management system, file
formats and system programs are standardized. This makes the data files easier to
maintain because the same rules and guidelines apply across all types of data. The
level of consistency across files and programs also makes it easier to manage data
when multiple programmers are involved.

User-friendly: Data is easier to access and manipulate with a DBMS than
without it. In most cases, DBMSs also reduce the reliance of individual users on
computer specialists to meet their data needs.

Improved security: As stated earlier, DBMSs allow multiple users to access the
same data resources. This capability is generally viewed as a benefit, but there are
potential risks for the organization. Some sources of information should be protected
or secured and only viewed by select individuals. Through the use of passwords,
database management systems can be used to restrict data access to only those who
should see it.

The Disadvantages of a DBMS

There are basically two major downsides to using DBMSs. One of these is cost,
and the other the threat to data security.

Cost: Implementing a DBMS system can be expensive and time-consuming,
especially in large organizations. Training requirements alone can be quite costly.

Security: Even with safeguards in place, it may be possible for some
unauthorized users to access the database. In general, database access is an all or
nothing proposition. Once an unauthorized user gets into the database, they have
access to all the files, not just a few. Depending on the nature of the data involved,
these breaches in security can also pose a threat to individual privacy. Steps should
also be taken to regularly make backup copies of the database files and store them
because of the possibility of fires and earthquakes that might destroy the system.

17

In this lesson, a database management system is defined, as well as its purposes
and functions. One of the most powerful aspects of a DBMS is the ability to organize
and retrieve data from different, but related, files. However, using databases and
DBMSs has its advantages and disadvantages. As you proceed with your career, you
should be aware of the tradeoffs that accompany using these computerized tools. The
tradeoffs we have discussed so far include such things as the redundancy, accuracy,
accessibility, and user-friendliness of data in a DBMS. Being educated about the
strengths and weaknesses of DBMSs will allow you to make more effective decisions
about how to organize and use data.

Lesson 4,
Theme of lecture:Modeling database. Database design

Plan:
{ How are Data Models Used in Practice?
Conceptual data models
Logical data models (LDMs).
Physical data models (PDMs).

Database design

Database design is the process of producing a detailed data model of a database.
This logical data model contains all the needed logical and physical design choices
and physical storage parameters needed to generate a design in a Data Definition
Language, which can then be used to create a database. A fully attributed data model
contains detailed attributes for each entity.

The term database design can be used to describe many different parts of the
design of an overall database system. Principally, and most correctly, it can be
thought of as the logical design of the base data structures used to store the data. In
the relational model these are the tables and views. In an object database the entities
and relationships map directly to object classes and named relationships. However,
the term database design could also be used to apply to the overall process of
designing, not just the base data structures, but also the forms and queries used as part
of the overall database application within the database management system
(DBMS).[1]

The process of doing database design generally consists of a number of steps
which will be carried out by the database designer. Usually, the designer must:

Determine the relationships between the different data elements.

Superimpose a logical structure upon the data on the basis of these relationships

ER Diagram (Entity-relationship model)

A sample Entity-relationship diagram

18

Database designs also include ER (Entity-relationship model) diagrams. An ER
diagram is a diagram that helps to design databases in an efficient way.

Attributes in ER diagrams are usually modeled as an oval with the name of the
attribute, linked to the entity or relationship that contains the attribute.

Within the relational model the final step can generally be broken down into two
further steps, that of determining the grouping of information within the system,
generally determining what are the basic objects about which information is being
stored, and then determining the relationships between these groups of information,
or objects. This step is not necessary with an Object database.

The Design Process

1. Determine the purpose of the database - This helps prepare for the remaining
steps.

2.Find and organize the information required - Gather all of the types of
information to record in the database, such as product name and order number.

3. Divide the information into tables - Divide information items into major
entities or subjects, such as Products or Orders. Each subject then becomes a table.

4. Turn information items into columns - Decide what information needs to
stored in each table. Each item becomes a field, and is displayed as a column in the
table. For example, an Employees table might include fields such as Last Name and
Hire Date.

5. Specify primary keys - Choose each table’s primary key. The primary key is a
column that is used to uniquely identify each row. An example might be Product ID
or Order ID.

6. Set up the table relationships - Look at each table and decide how the data in
one table is related to the data in other tables. Add fields to tables or create new tables
to clarify the relationships, as necessary.

7. Refine the design - Analyze the design for errors. Create tables and add a few
records of sample data. Check if results come from the tables as expected. Make
adjustments to the design, as needed.

8. Apply the normalization rules - Apply the data normalization rules to see if
tables are structured correctly. Make adjustments to the tables

Determining data to be stored
In a majority of cases, a person who is doing the design of a database is a person
with expertise in the area of database design, rather than expertise in the domain from

which the data to be stored is drawn e.g. financial information, biological information
etc. Therefore the data to be stored in the database must be determined in cooperation

19

with a person who does have expertise in that domain, and who is aware of what data
must be stored within the system.

This process is one which is generally considered part of requirements analysis,
and requires skill on the part of the database designer to elicit the needed information
from those with the domain knowledge. This is because those with the necessary
domain knowledge frequently cannot express clearly what their system requirements
for the database are as they are unaccustomed to thinking in terms of the discrete data
elements which must be stored. Data to be stored can be determined by Requirement
Specification

Normalization

In the field of relational database design, normalization is a systematic way of
ensuring that a database structure is suitable for general-purpose querying and free of
certain undesirable characteristics—insertion, update, and deletion anomalies—that
could lead to a loss of data integrity.

A standard piece of database design guidance is that the designer should create a
fully normalized design; selective denormalization can subsequently be performed,
but only for performance reasons. However, some modeling disciplines, such as the
dimensional modeling approach to data warechouse design, explicitly recommend
non-normalized designs, i.e. designs that in large part do not adhere to 3NF.

Normalization consists of normal forms that are INF,2NF,3NF,BOYCE-CODD
NF (3.5NF),4NF and 5NF.

Although methodology issues are covered later, we need to discuss how data

models can be used in practice to better understand them. You are likely to see three
basic styles of data model:
Conceptual data models. These models, sometimes called domain models, are
typically used to explore domain concepts with project stakeholders. On Agile teams
high-level conceptual models are often created as part of your initial requirements
envisioning efforts as they are used to explore the high-level static business structures
and concepts. On traditional teams conceptual data models are often created as the
precursor to LDMs or as alternatives to LDMs.

Logical data models (LDMs). LDMs are used to explore the domain concepts,
and their relationships, of your problem domain. This could be done for the scope of
a single project or for your entire enterprise. LDMs depict the logical entity types,
typically referred to simply as entity types, the data attributes describing those
entities, and the relationships between the entities. LDMs are rarely used on Agile
projects although often are on traditional projects (where they rarely seem to add
much value in practice).

Physical data models (PDMs). PDMs are used to design the internal schema of
a database, depicting the data tables, the data columns of those tables, and the
relationships between the tables.

Table 1. Data Modeling - Conceptual, Logical and Physical Data Models

20

Feature Conceptual | Logical Physical

Entity Names v v/
Entity v/ v/
Relationships

Attributes v/
Primary Keys v
Foreign Keys v
Table Names

Column Names

NN N NN

Column Data
Types

Although LDMs and PDMs sound very similar, and they in fact are, the level
of detail that they model can be significantly different. This is because the goals for
each diagram is different — you can use an LDM to explore domain concepts with
your stakeholders and the PDM to define your database design. Figure 1 presents a
simple LDM and Figure 2 a simple PDM, both modeling the concept of customers
and addresses as well as the relationship between them. Both diagrams apply the
Barker notation, summarized below. Notice how the PDM shows greater detail,
including an associative table required to implement the association as well as the
keys needed to maintain the relationships. More on these concepts later. PDMs
should also reflect your organization’s database naming standards, in this case an
abbreviation of the entity name is appended to each column name and an abbreviation
for “Number” was consistently introduced. A PDM should also indicate the data
types for the columns, such as integer and char(5). Although Figure 2 does not show
them, lookup tables (also called reference tables or description tables) for how the
address is used as well as for states and countries are implied by the attributes
ADDR USAGE CODE, STATE CODE, and COUNTRY CODE.

A simple logical data model.

21

Customer
Address

Customer Number Street
Social Security Number City
First Name > _____ has State
Surname <
Salutation (Z:iou(?:?l’e
Phone Number P

Figure 5. A simple physical data model.

TCUSTOMER TADDRESS

TCUSTOMER_ADDRESS
#CUST_NO: integer =

CUST_SOCIAL_SECURITY_HO: char(10)
CUST_FIRST_HAME: char(20)

ADDR_ID: integer
ADDR_STREET char (40)

CUST_NO: integer
ADDR_ID: integer

CUST_SURNAME: char(20)
CUST_SALUTATION: char (5)
CUST_PHONE_HO: char(20)

N ADDR_USAGE_CODE: char(2)

>_ _____|aDDR_CITY: char(20)

ADDR_ZIP: char(20)
ADDR_STATE_CODE: char(2)
ADDR_COUNTRY_CODE: char(3)

Figure 6.

An 1mportant observation about Figures 1 and 2 is that I’'m not slavishly
following Barker’s approach to naming relationships. For example, between
Customer and Address there really should be two names “Each CUSTOMER may be
located in one or more ADDRESSES” and “Each ADDRESS may be the site of one
or more CUSTOMERS”. Although these names explicitly define the relationship 1
personally think that they’re visual noise that clutter the diagram. I prefer simple
names such as “has” and then trust my readers to interpret the name in each direction.
I'll only add more information where it’s needed, in this case I think that it isn’t.
However, a significant advantage of describing the names the way that Barker
suggests is that it’s a good test to see if you actually understand the relationship — if
you can’t name it then you likely don’t understand it.

Data models can be used effectively at both the enterprise level and on projects.
Enterprise architects will often create one or more high-level LDMs that depict the
data structures that support your enterprise, models typically referred to as enterprise
data models or enterprise information models. An enterprise data model is one of
several views that your organization’s enterprise architects may choose to maintain
and support — other views may explore your network/hardware infrastructure, your
organization structure, your software infrastructure, and your business processes (to
name a few). Enterprise data models provide information that a project team can use
both as a set of constraints as well as important insights into the structure of their
system.

Project teams will typically create LDMs as a primary analysis artifact when
their implementation environment is predominantly procedural in nature, for example
they are using structured COBOL as an implementation language. LDMs are also a
good choice when a project is data-oriented in nature, perhaps a data warehouse or
reporting system is being developed (having said that, experience seems to show that

22

usage-centered approaches appear to work even better). However LDMs are often a
poor choice when a project team is using object-oriented or component-based
technologies because the developers would rather work with UML diagrams or when
the project is not data-oriented in nature. As Agile Modeling advises, apply the right
artifact(s) for the job. Or, as your grandfather likely advised you, use the right tool for
the job. It's important to note that traditional approaches to Master Data Management
(MDM) will often motivate the creation and maintenance of detailed LDMs, an effort
that is rarely justifiable in practice when you consider the total cost of ownership
(TCO) when calculating the return on investment (ROI) of those sorts of efforts.

2. What About Conceptual Models?

Halpin (2001) points out that many data professionals prefer to create an Object-
Role Model (ORM), an example is depicted in Figure 3, instead of an LDM for a
conceptual model. The advantage is that the notation is very simple, something your
project stakeholders can quickly grasp, although the disadvantage 1s that the models
become large very quickly. ORMs enable you to first explore actual data examples
instead of simply jumping to a potentially incorrect abstraction — for example Figure
3 examines the relationship between customers and addresses in detail. For more
information about ORM, visit www.orm.net.

Customer Address
SR I (streen)

John Smith l 123 Maln St.

Sally Smith 123 Maln St.
Sally Smith 456 Elm St.
789 Oak St.

Copyright 2002.2006
S 333 Birch St.

Scott W, Ambler Bob Jones

Figure 7. A simple Object-Role Model.
2.3. Common Data Modeling Notations

Figure 4 presents a summary of the syntax of four common data modeling
notations: Information Engineering (IE), Barker, IDEF1X, and the Unified Modeling
Language (UML). This diagram isn’t meant to be comprehensive, instead its goal is
to provide a basic overview. Furthermore, for the sake of brevity I wasn’t able to
depict the highly-detailed approach to relationship naming that Barker suggests.
Although I provide a brief description of each notation in Table 1 I highly suggest
David Hay’s paper A Comparison of Data Modeling Techniques as he goes into
greater detail than I do.

The IE notation (Finkelstein 1989) is simple and easy to read, and is well suited
for high-level logical and enterprise data modeling. The only drawback of this
notation, arguably an advantage, is that it does not support the identification of
attributes of an entity. The assumption is that the attributes will be modeled with
another diagram or simply described in the supporting documentation.

Lessons 5-6.

23

Theme of lecture:Data model
Plan:

Hierarchical Model;
Network Model;
Relational Model;
Object-Oriented Model;
Other Database models.

Database architecture is the fundamental schema, or physical layout, of a
database. Rooted in mathematical/structural theory, the most common database
architectures are: Hierarchical, Networked, Object-Oriented and Relational.

Hierarchical Model

e

/Representative
Lt edh st) \/—Br ent
Customer Customer
Contact #1 icantact #2
f child

12317 Product Line 1

2319 Product Lice 2 |
root (2487 | Product Line 3

Figure 8.

The hierarchical data model organizes data in a tree structure. There is a
hierarchy of parent and child data segments. This structure implies that a record can
have repeating information, generally in the child data segments. Data in a series of
records, which have a set of field values attached to it. It collects all the instances of a
specific record together as a record type. These record types are the equivalent of
tables in the relational model, and with the individual records being the equivalent of
rows. To create links between these record types, the hierarchical model uses Parent
Child Relationships. These are a 1:N mapping between record types. This is done by
using trees, like set theory used in the relational model, "borrowed" from maths. For
example, an organization might store information about an employee, such as name,
employee number, department, salary. The organization might also store information
about an employee's children, such as name and date of birth. The employee and
children data forms a hierarchy, where the employee data represents the parent
segment and the children data represents the child segment. If an employee has three
children, then there would be three child segments associated with one employee

24

segment. In a hierarchical database the parent-child relationship is one to many. This
restricts a child segment to having only one parent segment. Hierarchical DBMSs
were popular from the late 1960s, with the introduction of IBM's Information
Management System (IMS) DBMS, through the 1970s.

Network Model

The popularity of the network data model coincided with the popularity of the
hierarchical data model. Some data were more naturally modeled with more than one
parent per child. So, the network model permitted the modeling of many-to-many
relationships in data. In 1971, the Conference on Data Systems Languages
{CODASYL) formally defined the network model. The basic data modeling construct
in the network model is the set construct. A set consists of an owner record type, a set
name, and a member record type. A member record type can have that role in more
than one set, hence the multiparent concept is supported. An owner record type can
also be a member or owner in another set. The data model is a simple network, and
link and intersection record types (called junction records by IDMS) may exist, as
well as sets between them . Thus, the complete network of relationships is
represented by several pairwise sets; in each set some (one) record type is owner (at
the tail of the network arrow) and one or more record types are members (at the head
of the relationship arrow). Usually, a set defines a 1:M relationship, although 1:1 is
permitted. The CODASYL network model is based on mathematical set theory.

% Market L
Research .

Name, Human
Address, - Resources
man Resources
Job L is owner to all 3

. Funct_?o.n,'_:? records. Market
3 7 Research and

Management #. .7 Management Group
Group are owner to only
certain members.

Figure 9. Types of DBMS: Network Databases

Relational Model

(RDBMS - relational database management system) A database based on the
relational model developed by E.F. Codd. A relational database allows the definition
of data structures, storage and retrieval operations and integrity constraints. In such a
database the data and relations between them are organised in tables. A table is a
collection of records and each record in a table contains the same fields.

Properties of Relational Tables:

25

Values Are Atomic

Each Row is Unique

Column Values Are of the Same Kind
The Sequence of Columns is Insignificant
The Sequence of Rows is Insignificant
Each Column Has a Unique Name

Smith
mit

... Dbatabase1
1 _First Name |Last Name i
2 ‘Jahn Smith 1

3 John Smith

4 John Smit

5

5

2
v
... Dbatabase3d =
“Addiess Social Security No.
1321 Byberry Road |Q103-22-5945
:268 Monrog Avenue |
8120 Venshire Drive
1207 Congress Drive
1519 A

TV WA =

N
Figure 10. Types of DBMS: Relational Databases

Certain fields may be designated as keys, which means that searches for specific
values of that field will use indexing to speed them up. Where fields in two different
tables take values from the same set, a join operation can be performed to select
related records in the two tables by matching values in those fields. Often, but not
always, the fields will have the same name in both tables. For example, an "orders"
table might contain (customer-ID, product-code) pairs and a "products” table might
contain (product-code, price) pairs so to calculate a given customer's bill you would
sum the prices of all products ordered by that customer by joining on the product-
code fields of the two tables. This can be extended to joining multiple tables on
multiple fields. Because these relationships are only specified at retreival time,
relational databases are classed as dynamic database management system. The
RELATIONAL database model is based on the Relational Algebra.

Object/Relational Model

Object/relational database management systems (ORDBMSs) add new object
storage capabilities to the relational systems at the core of modemn information
systems. These new facilities integrate management of traditional fielded data,
complex objects such as time-series and geospatial data and diverse binary media
such as audio, video, images, and applets. By encapsulating methods with data
structures, an ORDBMS server can execute comple x analytical and data
manipulation operations to search and transform multimedia and other compiex
objects.

As an evolutionary technology, the object/relational (OR) approach has inherited
the robust transaction- and performance-management features of it s relational

26

ancestor and the flexibility of its object-oriented cousin. Database designers can work
with familiar tabular structures and data definition languages (DDLs) while
assimilating new object-management possibi lities. Query and procedural languages
and call interfaces in ORDBMSs are familiar: SQL3, vendor procedural languages,
and ODBC, JDBC, and proprie tary call interfaces are all extensions of RDBMS
languages and interfaces. And the leading vendors are, of course, quite well known:
IBM, Inform ix, and Oracle.

Object-Oriented Model

Object DBMSs add database functionality to object programming languages.
They bring much more than persistent storage of programming language objects.
Object DBMSs extend the semantics of the C++, Smalltalk and Java object
programming languages to provide full-featured database programming capability,
while retaining native language compatibility. A major benefit of this approach is the
unification of the application and database development into a seamless data model
and language environment. As a result, applications require less code, use more
natural data modeling, and code bases are easier to maintain. Object developers can
write complete database applications with a modest amount of additional effort.

According to Rao (1994), "The object-oriented database (OODB) paradigm is
the combination of object-oriented programming language (OOPL) systems and
persistent systems. The power of the OODB comes from the seamless treatment of
both persistent data, as found in databases, and transient data, as found in executing
programs."”

In contrast to a relational DBMS where a complex data structure must be
flattened out to fit into tables or joined together from those tables to form the in-
memory structure, object DBMSs have no performance overhead to store or retrieve a
web or hierarchy of interrelated objects. This one-to-one mapping of object
programming language objects to database objects has two benefits over other storage
approaches: it provides higher performance management of objects, and it enables
better management of the complex interrelationships between objects. This makes
object DBMSs better suited to support applications such as financial portfolio risk
analysis systems, telecommunications service applications, world wide web
document structures, design and manufacturing systems, and hospital patient record
systems, which have complex relationships between data.

Semistructured Modei

In semistructured data model, the information that is normally associated with a
schema is contained within the data, which is sometimes called *'self-describing”. In
such database there is no clear separation between the data and the schema, and the
degree to which it is structured depends on the application. In some forms of
semistructured data there is no separate schema, in others it exists but only places
loose constraints on the data. Semi-structured data is naturally modelled in terms of
graphs which contain labels which give semantics to its underlying structure. Such
databases subsume the modelling power of recent extensions of flat relational

27

databases, to nested databases which allow the nesting (or encapsulation) of entities,
and to object databases which, in addition, allow cyclic references between objects.

Semistructured data has recently emerged as an important topic of study for a
variety of reasons. First, there are data sources such as the Web, which we would like
to treat as databases but which cannot be constrained by a schema. Second, it may be
desirable to have an extremely flexible format for data exchange between disparate
databases. Third, even when dealing with structured data, it may be helpful to view it
as semistructured for the purposes of browsing.

Lesson 7.
Theme of lecture: Relational Algebra and Relational Calculus

Plan:
Relational Algebra
Relational Calculus

Relational Algebra

Relational algebra is a procedural query language that consists of a set of
operations that take one or two relations as input and result into a new relation as an
output. These operations are divided into two groups. One group consists of
operations developed specifically for relational databases such as select, project,
rename, join, and division. The other group includes the set-oriented operations such
as union, intersection, difference, and cartesian product. Some of the queries, which
are mathematical in nature, cannot be expressed using the basic operations of
relational algebra. For such queries, additional operations like aggregate functions
and grouping are used such as finding sum, average, etc. This section discusses. these
operations in detail.

Formal Relational Query Languages
¢ Two mathematical Query Languages form the basis for “real” languages (e.g.
SQL), and for implementation:
s Relational Algebra: More operational (procedural), very useful for
representing execution plans.
= Relational Calculus: Lets users describe what they want, rather than
how to compute it: Non-operational, declarative.
** A query is applied to relation instances, and the result of a query is also a
relation instance.
= Schemas of input relations for a query are fixed.
= The schema for the result of a given query is also fixed! - determined by
definition of query language constructs.
** Positional vs. named-field notation:

28

= Positional notation easier for formal definitions, named-field notation
more readable.
= Both used in SQL
Relational Algebra
% Basic operations:
= Selection (o) Selects a subset of rows from relation.
= Projection (7) Deletes unwanted columns from relation.
= Cross-product (*) Allows us to combine two relations.
= Set-difference (-) Tuplesinreln. 1, but not in reln. 2.
= Union (U) Tuplesinreln. 1 and in reln. 2.
** Additional operations:
= Intersection, join, division, renaming: Not essential, but (very') useful.
Since each operation returns a relation, operations can be composed: algebra is
“closed”.
Projection
¢+ Deletes attributes that are not in projection list.
« Schema of result contains exactly the fields in the projection list, with the same
names that they had in the input relation.
¢ Projection operator has to eliminate duplicates! Why?
= Note: real systems typically don’t do duplicate elimination unless the
user explicitly asks for it (by DISTINCT). Why not?
Selection
Selects rows that satisfy selection condition.
No duplicates in result! Why?
Schema of result identical to schema of input relation.
What is Operator composition?
Selection is distributive over binary operators
Selection is commutative

9,
%

»
o5

o,
Lx3

o,
o

°,
D>

o
DO

Table 2.Union, Intersection, Set-Difference

sid |sname |rating |age
22 dustin |7 45.0
31 lubber |8 55.5
58 rusty 10 35.0
44 guppy |5 35.0
28 |yuppy |9 35.0
S1lu §2
Table 3.

sid |sname |rating age
22 |dustin |7 45.0

4=}

S1-S52
Table 4.
sid |sname |rating |age
31 lubber |8 55.5
58 rusty 10 35.0
SIn S§2

Cross-Product (Cartesian Product)
% Each row of S1 is paired with each row of R1.
% Result schema has one field per field of S1 and RI, with field names
‘inherited’ if possible.
= Conflict: Both S1 and R1 have a field called sid.

Table S.
(sid) |sname |rating |age |(sid) |bid |day
22 |dustin 7 45.0 22 |101 [10/10/¢
22 |dustin 7 45.0 58 103 [11/12/¢
31 |lubber 8 55.5 22 |101 |{10/10/¢
31 |lubber 8 55.5 58 103 |11/12/¢
58 |rusty 10 35.0 22 |101 |10/10/¢
58 |rusty 10 35.0 58 103 (11/12/¢

= Renaming operator:

p(C (- sid 1,5 sid 2),S51xR1)

Joins: used to combine relations
Condition Join: Rpb< ., S =0 ,(RxS)

Table 6. B
(sid) |sname |rating |age' (sid) jT)id |day

22 dustin |7 450 |58 103 111/12/96
31 lubber |8 55.5 |58 103 |11/12/96

S oy Ga < R1 sia K1

* Result schema same as that of cross-product.
> Fewer tuples than cross-product, might be able to compute more efficiently
s Sometimes called a theta-join.
Division
% Not supported as a primitive operator, but useful for expressing queries like:
Find sailors who have reserved all boats.

30

¢ Let A4 have 2 fields, x and y; B have only field y:
= A/B=
* ie., A/B contains all x tuples (sailors) such that for every y tuple
(boat) in B, there is an xy tuple in 4.
» Or: If the set of y values (boats) associated with an x value (sailor) in 4
contains all y values in B, the x value is in A/B.
¢ In general, x and y can be any lists of fields; y is the list of fields in B, and x y
is the list of fields of 4.

Table 7.
Examples of Division A/B By
e Fe pro pro |
b et p2 P2 pl
sl |p2 P4 p2
sl |p3 ot B> pd
sl p4 B3
s2 |pl
s2 |p2
3 |p2 sho sno
s4 p2 84 sl |
A et A/R2 A/B3
. ¥
Relational Calculus g

- Comes in two fla\ ors:
and Domarn relational calcudus ’Dl 3.

Calculus has variables, wm‘mzt:, COHIParison ops,
Zwmul conmectives and quantifiers.
Variables range over (i.e., get bound to) tuples.

: Variables range over domain elements (= field values).
- bo*h TRC and DRC are sunple subsets of first-order logic.
Expressionsin the calculus are called forndas
answer tupleis essentiallyv an assignment of
constants to variables that make the formula

evaluate to fre.

31

. . . ~%
Domainn Relational Calcilis =

o Queriy has the form:
l(xl,x2,. ..,xrz> | p{(xl, x2,. xn>]]
+ Answer includes all tuples <x1,x2,...,xn> that

nmko thc formula p[(xl x2,.. xn>] be true.

(il is recursiv e]y defined, starting with
\111'1pie vic fornulas (getting tupleq tl om
1@1(&1011‘; or 1na.k1ng comparisons of values),
and building bigger and better formulas using
the z‘j-’"’,’{ ical conrnectives.

DRC Formulas

e Atomic forgulgs -y, <e Rname
. ,orXopY, or X opconstant
= op isoneof <, >,=< >

TTy——>
s Formula:
an atomic formula, or
= PPN, PV Quhere p and q are formulas, or
X (p (X ,Where X is a domain variable or
Y X (p (X, Where X is a domain variable.
% The use of quantifiers and is said to bind X.
Free and Bound Variables
¢ The use of quantifiers Hand YXin a formula is said to bind X.
= A variable that is not bound is free.
« Let us revisit the definition of a query:

x1,x2,., xn pDNxl,x2 .., xn (
) (e) I

¢ There is an important restriction: the variables x1, ..., xn that appear to the left

of ']’ must be the only free variables in the formula p(...).
Summary of Relational Algebra

The relational model has rigorously defined query languages that are simple and

powerful.

Relational algebra is more operational; useful as internal representation for

query evaluation plans.

Several ways of expressing a given query; a query optimizer should choose the

most efficient version.

Summary of Relational Calculus

32

Relational calculus is non-operational, and users define queries in terms of what
they want, not in terms of how to compute it. (Declarativeness.)

Algebra and safe calculus have same expressive power, leading to the notion of
relational completeness.

Lesson 8.
Theme of lecture: Entity—relationship model

Plan

Entity — Relationship model (ER model for short)

The building blocks: entities, relationships, and attributes

Entity—relationship diagrams don't show single entities or single instances of

relations.

In software engineering, an Entity — Relationship model (ER model for short) is
an abstract way to describe a database. It usually starts ‘with a relational database,
which stores data in tables. Some of the data in these tables point to data in other
tables - for instance, your entry in the database could point to several entries for each
of the phone numbers that are yours. The ER model would say that you are an entity,
and each phone number is an entity, and the relationship between you and the phone
numbers is 'has a phone number'. Diagrams created to design these entities and
relationships are called entity-relationship diagrams or ER diagrams.

Using the three schema approach to software engineering, there are three levels
of ER models that may be developed. The conceptual data model is the highest level
ER model in that it contains the least granular detail but establishes the overall scope
of what is to be included within the model set. The conceptual ER model normally
defines master reference data entities that are commonly used by the organization.
Developing an enterprise-wide conceptual ER model is useful to support
documenting the data architecture for an organization.

A conceptual ER model may be used as the foundation for one or more logical
data models. The purpose of the conceptual ER model is then to establish structural
metadata commonality for the master data entities between the set of logical ER
models. The conceptual data model may be used to form commonality relationships
between ER models as a basis for data model integration.

A logical ER model does not require a conceptual ER model especially if the
scope of the logicai ER model is to develop a single disparate information system.
The logical ER model contains more detail than the conceptual ER model. In addition
to master data entities, operational and transactional data entities are now defined.
The details of each data entity are developed and the entity relationships between
these data entities are established. The logical ER model is however developed
independent of technology into which it will be implemented.

One or more physical ER models may be developed from each logical ER
model. The physical ER model is normally developed be instantiated as a database.

33

Therefore, each physical ER model must contain enough detail to produce a database
and each physical ER model is technology dependent since each database
management system is somewhat different.

The physical model is normally forward engineered to instantiate the structural
metadata into a database management system as relational database objects such as
database tables, database indexes such as unique key indexes, and database
constraints such as a foreign key constraint or a commonality constraint. The ER
model is also normally used to design modifications to the relational database objects
and to maintain the structural metadata of the database.

The first stage of information system design uses these models during the
requirements analysis to describe information needs or the type of information that is
to be stored in a database. The data modeling technique can be used to describe any
ontology (1.e. an overview and classifications of used terms and their relationships)
for a certain area of interest. In the case of the design of an information system that is
based on a database, the conceptual data model is, at a later stage (usually called
logical design), mapped to a logical data model, such as the relational model; this in
turn is mapped to a physical model during physical design. Note that sometimes, both
of these phases are referred to as "physical design”.

The building blocks: entities, relationships, and attributes

Two related entities

An entity with an attribute

A relationship with an attribute

Primary key

An entity may be defined as a thing which is recognized as being capable of an
independent existence and which can be uniquely identified. An entity is an
abstraction from the complexities of a domain. When we speak of an entity, we
normally speak of some aspect of the real world which can be distinguished from
other aspects of the real world [4].

An entity may be a physical object such as a house or a car, an event such as a
house sale or a car service, or a concept such as a customer transaction or order.
Although the term entity is the one most commonly used, following Chen we should
really distinguish between an entity and an entity-type. An entity-type is a category.
An entity, strictly speaking, is an instance of a given entity-type. There are usually
many instances of an entity-type. Because the term entity-type is somewhat
cumbersome, most people tend to use the term entity as a synonym for this term.

Entities can be thought of as nouns. Examples: a computer, an employee, a song,
a mathematical theorem.

A relationship captures how entities are related to one another. Relationships can
be thought of as verbs, linking two or more nouns. Examples: owns relationship
between a company and a computer, supervises relationship between an employee
and a department, a performs relationship between an artist and a song, a proved
relationship between a mathematician and a theorem.

34

The model's linguistic aspect described above is utilized in the declarative
database query language ERROL, which mimics natural language, constructs.
ERROL's semantics and implementation are based on Reshaped relational algebra
(RRA), a relational algebra which is adapted to the entity—relationship model and
captures its linguistic aspect.

Entities and relationships can both have attributes. Examples: an employee
entity might have a Social Security Number (SSN) attribute; the proved relationship
may have a date attribute.

Two related ertitles

Figure 11.

T o>

L ertity wwith sam attribut e

Figure 12.

A relationship with an attribute

Figure 13.

< xo >

R LR TR SRV ST

Figure 14.

Every entity (unless it is a weak entity) must have a minimal set of uniquely
identifying attributes, which is called the entity's primary key.

Entity—relationship diagrams don't show single entities or single instances of
relations. Rather, they show entity sets and relationship sets. Example: a particular
song is an entity. The collection of all songs in a database is an entity set. The eaten
relationship between a child and her lunch is a single relationship. The set of all such
child-lunch relationships in a database is a relationship set. In other words, a
relationship set corresponds to a relation in mathematics, while a relationship
corresponds to a member of the relation.

35

Lesson 9.
Theme of lecture: Database Normalization Basics

Plan

Normalization is the process of efficiently organizing data in a database.
The Normal Forms

First Normal Form

If you've been working with databases for a while, chances are you've heard the
term normalization. Perhaps someone's asked you "Is that database normalized?" or
"Is that in BCNF?" All too often, the reply is "Uh, yeah." Normalization is often
brushed aside as a luxury that only academics have time for. However, knowing the
principles of normalization and applying them to your daily database design tasks
really isn't all that complicated and it could drastically improve the performance of
your DBMS.

In this lecture, we'll introduce the concept of normalization and take a brief look
at the most common normal forms. Future articles will provide in-depth explorations
of the normalization process.

What is Normalization?

Normalization is the process of efficiently organizing data in a database. There
are two goals of the normalization process: eliminating redundant data (for example,
storing the same data in more than one table) and ensuring data dependencies make
sense (only storing related data in a table). Both of these are worthy goals as they
reduce the amount of space a database consumes and ensure that data is logically
stored.

The Normal Forms

The database community has developed a series of guidelines for ensuring that
databases are normalized. These are referred to as normal forms and are numbered
from one (the lowest form of normalization, referred to as first normal form or 1NF)
through five (fifth normal form or SNF). In practical applications, you'll often see
INF, 2NF, and 3NF along with the occasional 4NF. Fifth normal form is very rarely
seen and won't be discussed in this lecture.

Before we begin our discussion of the normal forms, it's important to point out
that they are guidelines and guidelines only. Occasionally, it becomes necessary to
stray from them to meet practical business requirements. However, when variations
take place, it's extremely important to evaluate any possible ramifications they could
have on your system and account for possible inconsistencies. That said, let's explore
the normal forms.

First Normal Form (1NF)

First normal form (INF) sets the very basic rules for an organized database:
Eliminate duplicative columns from the same table.

36

Create separate tables for each group of related data and identify each row with
a unique column or set of columns (the primary key).

Eliminate duplicative columns from the same table.

Create separate tables for each group of related data and identify each row with
a unique column or set of columns (the primary key).

For more details, read Putting your Database in First Normal Form

Second Normal Form (2NF)

Second normal form (2NF) further addresses the concept of removing
duplicative data: Meet all the requirements of the first normal form.

Remove subsets of data that apply to multiple rows of a table and place them in
separate tables.

Create relationships between these new tables and their predecessors through the
use of foreign keys.

Meset all the requirements of the first normal form.

Remove subsets of data that apply to multiple rows of a table and place them in
separate tables.

Create relationships between these new tables and their predecessors through the
use of foreign keys.

For more details, read Putting your Database in Second Normal Form

Third Normal Form (3NF)

Third normal form (3NF) goes one large step further: Meet all the requirements
of the second normal form.

Remove columns that are not dependent upon the primary key.

Meet all the requirements of the second normal form.

Remove columns that are not dependent upon the primary key.

For more details, read Putting your Database in Third Normal Form

Boyce-Codd Normal Form (BCNF or 3.5NF)

The Boyce-Codd Normal Form, also referred to as the "third and half (3.5)
normal form", adds one more requirement: Meet all the requirements of the third
normal form.

Every determinant must be a candidate key.

Meet all the requirements of the third normal form.

Every determinant must be a candidate key.

For more details, read Putting your Database in Boyce Codd Normal Form

Fourth Normal Form (4NF)

Finally, fourth normal form (4NF) has one additional requirement: Meet all the
requirements of the third normal form.

A relation is in 4NF if it has no multi-valued dependencies.

Meet all the requirements of the third normal form.

A relation is in 4NF if it has no multi-valued dependencies.

Remember, these normalization guidelines are cumulative. For a database to be
in 2NF, 1t must first fulfill all the criteria of a 1NF database.

37

While database normalization is often a good idea, it's not an absolute
requirement. In fact, there are some cases where deliberately violating the rules of
normalization is a good practice. For more on this topic, read Should I Normalize My
Database?

Lesson 10.
Theme of lecture: Network Information System (NIS/YP)

Plan

Terms/Processes

Choosing a NIS Domain Name
Physical Server Requirements
NIS Servers

NIS, which stands for Network Information Services, was developed by Sun
Microsystems to centralize administration of UNIX® (originally SunOS™) systems.
It has now essentially become an industry standard; all major UNIX like systems
(Sotaris™, HP-UX, AIX®, Linux, NetBSD, OpenBSD, FreeBSD, etc) support NIS.

NIS was formerly known as Yellow Pages, but because of trademark issues, Sun
changed the name. The old term (and yp) is still often seen and used.

It 1s a RPC-based client/server system that allows a group of machines within an
NIS domain to share a common set of configuration files. This permits a system
admunistrator to set up NIS client systems with only minimal configuration data and
add, remove or modify configuration data from a single location.

It is similar to the Windows NT® domain system; although the internal
implementation of the two are not at all similar, the basic functionality can be
compared.

Terms/Processes

There are several terms and several important user processes that you will come
across when attempting to implement NIS on FreeBSD, whether you are trying to
create an NIS server or act as an NIS client:

38

Table 8.

| Term L Description |
| NIS domainname An NIS master server and all of its clients (including its slave

servers) have a NIS domainname. Similar to an Windows NT |
domain name, the NIS domainname does not have anything
to do with DNS

Rpcbind Must be running in order to enable RPC (Remote
Procedure Call, a network protocol used by NIS). If rpcbind
is not running, it will be impossible to run an NIS server, or to
act as an NIS client

Ypbind “Binds” an NIS client to its NIS server. It will take the NIS
domainname from the system, and using RPC, connect to the
server. ypbind is the core of client-server communication in
an NIS environment; if ypbind dies on a client machine, it‘
will not be able to access the NIS server i
Ypserv Should only be running on NIS servers; this is the NIS server
process itself. If ypserv(8) dies, then the server will no longer
be able to respond to NIS requests (hopefully, there is a slave |
server to take over for it). There are some implementations of
NIS (but not the FreeBSD one), that do not try to reconnect to
another server if the server it used before dies. Often, the only
thing that helps in this case is to restart the server process (or |
even the whole server) or the ypbind process on the client.
rpc.yppasswdd Another process that should only be running on NIS
master servers; this is a daemon that will allow NIS clients to |
change their NIS passwords. If this daemon is not running,
users will have to login to the NIS master server and change
their passwords there |

How Does It Work?

There are three types of hosts in an NIS environment: master servers, slave
servers, and clients. Servers act as a central repository for host configuration
information. Master servers hold the authoritative copy of this information, while
slave servers mirror this information for redundancy. Clients rely on the servers to
provide this information to them.

Information in many files can be shared in this manner. The master.passwd,
group, and hosts files are commonly shared via NIS. Whenever a process on a client
needs information that would normally be found in these files locally, it makes a
query to the NIS server that it is bound to instead.

Machine Types

39

A NIS master server. This server, analogous to a Windows NT primary domain
controller, maintains the files used by all of the NIS clients. The passwd, group, and
other various files used by the NIS clients live on the master server.

Note: [t is possible for one machine to be an NIS master server for more than
one NIS domain. However, this will not be covered in this introduction, which
assumes a relatively small-scale NIS environment.

NIS slave servers. Similar to the Windows NT backup domain controliers, NIS
slave servers maintain copies of the NIS master's data files. NIS slave servers provide
the redundancy, which is needed in important environments. They also help to
balance the load of the master server: NIS Clients always attach to the NIS server
whose response they get first, and this includes slave-server-replies.

NIS clients. NIS clients, like most Windows NT workstations, authenticate
against the NIS server (or the Windows NT domain controller in the Windows NT
workstations case) to log on.

Using NIS/YP

This section will deal with setting up a sample NIS environment.
Planning

Let us assume that you are the administrator of a small university lab. This lab,
which consists of 15 FreeBSD machines, currently has no centralized point of
administration; each machine has its own /etc/passwd and /etc/master.passwd. These
files are kept in sync with each other only through manual intervention; currently,
when you add a user to the lab, you must run adduser on all 15 machines. Clearly,
this has to change, so you have decided to convert the lab to use NIS, using two of
the machines as servers.

Therefore, the configuration of the lab now looks something like:

Table 9.

Machine name IP address Machine role

Ellington 10.0.0.2 NIS master

Coltrane 10.0.0.3 NIS slave

Basie 10.0.04 Faculty workstation
Bird 10.0.0.5 Client machine

cli[1-11] 10.0.0.[6-17] Other client machines

If you are setting up a NIS scheme for the first time, it is a good idea to think
through how you want to go about it. No matter what the size of your network, there
are a few decisions that need to be made.

Choosing a NIS Domain Name

This might not be the “domainname” that you are used to. It is more accurately
called the “NIS domainname”. When a client broadcasts its requests for info, it

40

includes the name of the NIS domain that it is part of. This is how muitiple servers on
one network can tell which server should answer which request. Think of the NIS
domainname as the name for a group of hosts that are related in some way.

Some organizations choose to use their Internet domainname for their NIS
domainname. This is not recommended as it can cause confusion when trying to
debug network problems. The NIS domainname should be unique within your
network and it is helpful if it describes the group of machines it represents. For
example, the Art department at Acme Inc. might be in the “acme-art” NIS domain.
For this example, assume you have chosen the name test-domain.

However, some operating systems (notably SunOS) use their NIS domain name
as their Internet domain name. If one or more machines on your network have this
restriction, you must use the Internet domain name as your NIS domain name.

Physical Server Requirements

There are several things to keep in mind when choosing a machine to use as a
NIS server. One of the unfortunate things about NIS is the level of dependency the
clients have on the server. If a client cannot contact the server for its NIS domain,
very often the machine becomes unusable. The lack of user and group information
causes most systems to temporarily freeze up. With this in mind you should make
sure to choose a machine that will not be prone to being rebooted regularly, or one
that might be used for development. The NIS server should ideally be a stand alone
machine whose sole purpose in life is to be an NIS server. If you have a network that
is not very heavily used, it is acceptable to put the NIS server on a machine running
other services, just keep in mind that if the NIS server becomes unavailable, it will
affect all of your NIS clients adversely.

NIS Servers

The canonical copies of all NIS information are stored on a single machine
called the NIS master server. The databases used to store the information are called
NIS maps. In FreeBSD, these maps are stored in /var/yp/[domainname] where
[domainname] is the name of the NIS domain being served. A single NIS server can
support several domains at once, therefore it is possible to have several such
directories, one for each supported domain. Each domain will have its own
independent set of maps.

NIS master and slave servers handle all NIS requests with the ypserv daemon.
ypserv is responsible for receiving incoming requests from NIS clients, translating
the requested domain and map name to a path to the corresponding database file and
transmitting data from the database back to the client.

41

Lesson 11.
Theme of lecture:Usage Database. Database security

Plan

Access control
Data security
Database audit

Database security deals with all various aspects of protecting the database
content, its owners, and its users. It ranges from protection from intentional
unauthorized database uses to unintentional database accesses by unauthorized
entities (e.g., a person or a computer program).

Database security concerns the use of a broad range of information security
controls to protect databases (potentially including the data, the database applications
or stored functions, the database systems, the database servers and the associated
network links) against compromises of their confidentiality, integrity and availability.
It involves various types or categories of controls, such as technical,
procedural/administrative and physical. Database security is a specialist topic within
the broader realms of computer security, information security and risk management.

Security risks to database systems include, for example:

Unauthorized or unintended activity or misuse by authorized database users,
database administrators, or network/systems managers, or by unauthorized users or
hackers (e.g. inappropriate access to sensitive data, metadata or functions within
databases, or inappropriate changes to the database programs, structures or security
configurations);

Malware infections causing incidents such as unauthorized access, leakage or
disclosure of personal or proprietary data, deletion of or damage to the data or
programs, interruption or denial of authorized access to the database, attacks on other
systems and the unanticipated failure of database services;

Overloads, performance constraints and capacity issues resulting in the inability
of authorized users to use databases as intended;

Physical damage to database servers caused by computer room fires or floods,
overheating, lightning, accidental liquid spills, static discharge, electronic
breakdowns/equipment failures and obsolescence;

Design flaws and programming bugs in databases and the associated programs
and systems, creating various security vulnerabilities (e.g. unauthorized privilege
escalation), data loss/corruption, performance degradation etc.;

Data corruption and/or loss caused by the entry of invalid data or commands,
mistakes in database or system administration processes, sabotage/criminal damage
etc.

Many layers and types of information security control are appropriate to
databases, including:

e Access control

42

e Auditing

¢ Authentication

e Encryption

¢ Integrity controls

e Backups

e Application security

Traditionally databases have been largely secured against hackers through
network security measures such as firewalls, and network-based intrusion detection
systems. While network security controls remain valuable in this regard, securing the
database systems themselves, and the programs/functions and data within them, has
arguably become more critical as networks are increasingly opened to wider access,
in particular access from the Internet. Furthermore, system, program, function and
data access controls, along with the associated user identification, authentication and
rights management functions, have always been important to limit and in some cases
log the activities of authorized users and administrators. In other words, these are
complementary approaches to database security, working from both the outside-in
and the inside-out as it were.

Many organizations develop their own "baseline" security standards and designs
detailing basic security control measures for their database systems. These may
reflect general information security requirements or obligations imposed by corporate
information security policies and applicable laws and regulations (e.g. concerning
privacy, financial management and reporting systems), along with generally-accepted
good database security practices (such as appropriate hardening of the underlying
systems) and perhaps security recommendations from the relevant database system
and software vendors. The security designs for specific database systems typically
specify further security admunistration and management functions (such as
administration and reporting of user access rights, log management and analysis,
database replication/synchronization and backups) along with various business-driven
information security controls within the database programs and functions (e.g. data
entry validation and audit trails). Furthermore, various security-related activities
(manual controls) are normally incorporated into the procedures, guidelines etc.
relating to the design, development, configuration, use, management and maintenance
of databases.

The following are major areas of database security (among many others),

Access control

Database access control deals with controlling who (a person or a certain
computer program) is allowed to access what information in the database. The
information may comprise specific database objects (e.g., record types, specific
records, data structures), certain computations over certain objects (e.g., query types,
or specific queries), or utilizing specific access paths to the former (e.g., using
specific indexes or other data structures to access information).

43

Access control refers to exerting control over who can interact with a resource.
Often but not always, this involves an authority, who does the controlling. The
resource can be a given building, group of buildings, or computer-based information
system. But it can also refer to a restroom.

Access control is, in reality, an everyday phenomenon. A lock on a car door is
essentially a form of access control. A PIN on an ATM system at a bank is another
means of access control. The possession of access control is of prime importance
when persons seek to secure important, confidential, or sensitive information and
equipment.

Item control or electronic key management is an area within (and possibly
integrated with) an access control system which concerns the managing of possession
and location of small assets or physical (mechanical) keys

Database access controls are set by special authorized (by the database owner)
personnel that uses dedicated protected security DBMS interfaces.

Physical access by a person may be allowed depending on payment,
authorization, etc. Also there may be one-way traffic of people. These can be
enforced by personnel such as a border guard, a doorman, a ticket checker, etc., or
with a device such as a turnstile. There may be fences to avoid circumventing this
access control. An alternative of access control in the strict sense (physically
controlling access itself) is a system of checking authorized presence, see e.g. Ticket
controller (transportation). A variant is exit control, e.g. of a shop (checkout) or a
country.

In physical secunty, the term access control refers to the practice of restricting
entrance to a property, a building, or a room to authorized persons. Physical access
control can be achieved by a human (a guard, bouncer, or receptionist), through
mechanical means such as locks and keys, or through technological means such as
access control systems like the mantrap. Within these environments, physical key
management may also be employed as a means of further managing and monitoring
access to mechanically keyed areas or access to certain small assets.[

Physical access control is a matter of who, where, and when. An access control
system determines who is allowed to enter or exit, where they are allowed to exit or
enter, and when they are allowed to enter or exit. Historically this was partially
accomplished through keys and locks. When a door is locked only someone with a
key can enter through the door depending on how the lock is configured. Mechanical
locks and keys do not allow restriction of the key holder to specific times or dates.
Mechanical locks and keys do not provide records of the key used on any specific
door and the keys can be easily copied or transferred to an unauthorized person.
When a mechanical key is lost or the key holder is no longer authorized to use the
protected area, the locks must be re-keyed.

Electronic access control uses computers to solve the limitations of mechanical
locks and keys. A wide range of credentials can be used to replace mechanical keys.
The electronic access control system grants access based on the credential presented.
When access is granted, the door is unlocked for a predetermined time and the

44

transaction is recorded. When access 1s refused, the door remains locked and the
attempted access is recorded. The system will also monitor the door and alarm if the
door is forced open or held open too long after being unlocked.

Data security

The defimition of data security varies and may overlap with other database
security aspects. Broadly it deals with protecting specific chunks of data, both
physically (i.e., from corruption, or destruction, or removal; e.g., see Physical
security), or the interpretation of them, or parts of them to meaningful information
(e.g., by looking at the strings of bits that they comprise, concluding specific valid
credit-card numbers; e.g., see Data encryption).

Data Security Technologies

Disk Encryption

Disk encryption refers to encryption technology that encrypts data on a hard disk
drive. Disk encryption typically takes form in either software (see disk encryption
software] or hardware (see disk encryption hardware). Disk encryption is often
referred to as on-the-fly encryption ("OTFE") or transparent encryption.

Hardware based Mechanisms for Protecting Data

Software based security solutions encrypt the data to prevent data from being
stolen. However, a malicious program or a hacker may corrupt the data in order to
make it unrecoverable or unusable. Similarly, encrypted operating systems can be
corrupted by a malicious program or a hacker, making the system unusable.
Hardware-based security solutions can prevent read and write access to data and
hence offers very strong protection against tampering and unauthorized access.

Hardware based or assisted computer security offers an alternative to software-
only computer security. Security tokens such as those using PKCS#11 may be more
secure due to the physical access required in order to be compromised. Access is
enabled only when the token is connected and correct PIN is entered (see two factor
authentication). However, dongles can be used by anyone who can gain physical
access to it. Newer technologies in hardware based security solves this problem
offering fool proof security for data.

Working of Hardware based security: A hardware device allows a user to login,
logout and to set different privilege levels by doing manual actions. The device uses
biometric technology to prevent malicious users from logging in, logging out, and
changing privilege levels. The current state of a user of the device is read by
controllers in peripheral devices such as harddisks. Illegal access by a malicious user
or a malicious program is interrupted based on the current state of a user by harddisk
and DVD controllers making illegal access to data impossible. Hardware based
access control is more secure than protection provided by the operating systems as
operating systems are vulnerable to malicious attacks by viruses and hackers. The
data on harddisks can be corrupted after a malicious access is obtained. With
hardware based protection, software cannot manipulate the user privilege levels, it is
impossible for a hacker or a malicious program to gain access to secure data
protected by hardware or perform unauthorized privileged operations. The hardware

45

protects the operating system image and file system privileges from being tampered.
Therefore, a completely secure system can be created using a combination of
hardware based security and secure system administration policies.

In cryptography, encryption is the process of encoding messages (or
information) in such a way that eavesdroppers or hackers cannot read it, but that
authorized parties. In an encryption scheme, the message or information (referred to
as plaintext) is encrypted using an encryption algorithm, turning it into an unreadable
ciphertext (ibid.). This is usually done with the use of an encryption key, which
specifies how the message is to be encoded. Any adversary that can see the
ciphertext, should not be able to determine anything about the original message. An
authorized party, however, is able to decode the ciphertext using a decryption
algorithm, that usually requires a secret decryption key, that adversaries do not have
access to. For technical reasons, an encryption scheme usually needs a key-generation
algorithm, to randomly produce keys.

There are two basic types of encryption schemes private-key encryption and
public-key encryption. In private-key schemes, the encryption and decryption keys
are the same. Thus communicating parties must agree on a secret key before they
wish to communicate. By contrast, in public-key schemes, the encryption key is
public: that is, anyone (friend or foe) has access to the encryption key, and can
encrypt messages. However only the receiving party has access to the decryption key
and thus is the only one capable of reading the encrypted messages. Public-key
encryption is a relatively recent invention: historically, all encryption schemes have
been private-key schemes.

Encryption has long been used by militaries and governments to facilitate secret
communication. It is now commonly used in protecting information within many
kinds of civilian systems. For example, the Computer Security Institute reported that
in 2007, 71% of companies surveyed utilized encryption for some of their data in
transit, and 53% utilized encryption for some of their data in storage. Encryption can
be used to protect data "at rest", such as files on computers and storage devices (e.g.
USB flash drives). In recent years there have been numerous reports of confidential
data such as customers' personal records being exposed through loss or theft of
laptops or backup drives. Encrypting such files at rest helps protect them should
physical security measures fail. Digital rights management systems which prevent
unauthorized use or reproduction of copyrighted material and protect software against
reverse engineering (see also copy protection) are another somewhat different
example of using encryption on data at rest.

Encryption is also used to protect data in transit, for example data being
transferred via networks (e.g. the Internet, e-commerce), mobile telephones, wireless
microphones, wireless intercom systems, Bluetooth devices and bank automatic teller
machines. There have been numerous reports of data in transit being intercepted in
recent years. Encrypting data in transit also helps to secure it as it is often difficult to
physically secure all access to networks.

46

Encryption, by itself, can protect the confidentiality of messages, but other
techniques are still needed to protect the integrity and authenticity of a message; for
example, verification of a message authentication code (MAC) or a digital signature.
Standards and cryptographic software and hardware to perform encryption are widely
available, but successfully using encryption to ensure security may be a challenging
problem. A single slip-up in system design or execution can allow successful attacks.
Sometimes an adversary can obtain unencrypted information without directly
undoing the encryption. One of the earliest public key encryption applications was
called Pretty Good Privacy (PGP). It was written in 1991 by Phil Zimmermann and
was purchased by Symantec in 2010.

Digital signature and encryption must be applied at message creation time (i.e.
on the same device it has been composed) to avoid tampering. Otherwise any node
between the sender and the encryption agent could potentially tamper it. It should be
noted that encrypting at the time of creation only adds security if the encryption
device itself has not been tampered with.

Database audit

Database audit primarily involves monitoring that no secunty breach, in all
aspects, has happened. If security breach is discovered then all possible corrective
actions are taken.

Lesson 12.
Theme of lecture: Analyze the current technology which materialize
database. Standards and languages. (MS SQL)

Plan

SQL Fundamentals
Basic commands of SOL:
CREATE

USE

ALTER

DROP

Data Manipulation Language
INSERT

SELECT

UPDATE

DELETE

SQL Fundamentals

Introduction

The Structured Query Language (SQL) comprises one of the fundamental
building blocks of modern database architecture. SQL defines the methods used to
create and manipulate relational databases on all major platforms. At first glance, the
language may seem intimidating and complex but it's really not all that bad.

47

We'll take a brief look at some of the main commands used to create and modify
databases and provide a few examples for illustrative purposes and explain the theory
behind them.

By the way, the correct pronunciation of SQL is a contentious issue within the
database community. In their SQL standard, the American National Standards
Institute declared that the official pronunciation is "es queue el." However, many
database professionals have taken to the slang pronunciation "sequel.” The choice is
yours.

SQL comes in many flavors. Oracle databases utilize their proprietary PL/SQL.
Microsoft SQL Server makes use of Transact-SQL. However, all of these variations
are based upon the industry standard ANSI SQL. In our tutorial series, we'll stick to
ANSI-compliant SQL commands that will work on any modern relational database
system.

SQL commands can be divided into two main sublanguages. The Data
Definition Language (DDL) contains the commands used to create and destroy
databases and database objects. After the database structure is defined with DDL,
database administrators and users can utilize the Data Manipulation Language to
insert, retrieve and modify the data contained within it.

The Data Definition Language (DDL) is used to create and destroy databases
and database objects. These commands will primarily be used by database
administrators during the setup and removal phases of a database project. Let's take a
look at the structure and usage of four basic DDL commands:

CREATE

Installing a database management system (DBMS) on a computer allows you to
create and manage many independent databases. For example, you may want to
maintain a database of customer contacts for your sales department and a personnel
database for your HR department. The CREATE command can be used to establish
each of these databases on your platform. For example, the command:

CREATE DATABASE employees

creates an empty database named "employees" on your DBMS. After creating
the database, your next step is to create tables that will contain data. Another variant
of the CREATE command can be used for this purpose. The command;

CREATE TABLE personal info (first name char(20) not null, last name
char(20) not null, employee_id int not null)

establishes a table titled "personal info" in the current database. In our example,
the table contains three attributes: first name, last name and employee_id.

USE

The USE command allows you to specify the database you wish to work with
within your DBMS. For example, if we're currently working in the sales database and
want to issue some commands that will affect the employees database, we would
preface them with the following SQL command:

48

USE employees

It's important to always be conscious of the database you are working in before
issuing SQL commands that manipulate data.

ALTER

Once you've created a table within a database, you may wish to modify the
definition of it. The ALTER command allows you to make changes to the structure of
a table without deleting and recreating it. Take a look at the following command:

ALTER TABLE personal_info
ADD salary money null

This example adds a new attribute to the personal info table -- an employee's
salary. The "money" argument specifies that an employee's salary will be stored using
a dollars and cents format. Finally, the "null"” keyword tells the database that it's OK
for this field to contain no value for any given employee.

DROP

The final command of the Data Definition Language, DROP, allows us to
remove entire database objects from our DBMS. For example, if we want to
permanently remove the personal_info table that we created, we'd use the following
command:

DROP TABLE personal_info

Similarly, the command below would be used to remove the entire employees
database:

DROP DATABASE employees

Use this command with care! Remember that the DROP command removes
entire data structures from your database. If you want to remove individual records,
use the DELETE command of the Data Manipulation Language.

That's the Data Definition Language in a nutshell. In the next section of this
article, we'll take a look at how the Data Manipulation ILanguage is used to
manipulate the information contained within a database.

Data Manipulation Language

The Data Manipulation Language (DML) is used to retrieve, insert and modify
database information. These commands will be used by all database users during the
routine operation of the database. Let's take a brief look at the basic DML commands:

The Data Manipulation Language (DML) is used to retrieve, insert and modify
database information. These commands will be used by all database users during the
routine operation of the database. Let's take a brief look at the basic DML commands:

INSERT

The INSERT command in SQL is used to add records to an existing table.
Returning to the personal_info example from the previous section, let's imagine that

49

our HR department needs to add a new employee to their database. They could use a
command similar to the one shown below:

INSERT INTO personal_info

values('bart,'simpson',12345,545000)

Note that there are four values specified for the record. These correspond to the
table attributes in the order they were defined: first name, last name, employee id,
and salary.

SELECT

The SELECT command is the most commonly used command in SQL. It allows
database users to retrieve the specific information they desire from an operational
database. Let's take a look at a few examples, again using the personal info table
from our employees database.

The command shown below retrieves all of the information contained within the
personal_info table. Note that the asterisk is used as a wildcard in SQL. This literally
means "Select everything from the personal info table."

SELECT *

FROM personal_info

Alternatively, users may want to limit the attributes that are retrieved from the
database. For example, the Human Resources department may require a list of the last
names of all employees in the company. The following SQL command would retrieve
only that information:

SELECT last_name

FROM personal_info

Finally, the WHERE clause can be used to limit the records that are retrieved to
those that meet specified criteria. The CEO might be interested in reviewing the
personnel records of all highly paid employees. The following command retrieves all
of the data contained within personal_info for records that have a salary value greater
than $50,000:

SELECT *

FROM personal_info

WHERE salary > $50000

UPDATE

The UPDATE command can be used to modify information contained within a
table, either in bulk or individually. Each year, our company gives all employees a
3% cost-of-living increase in their salary. The following SQL command could be
used to quickly apply this to all of the employees stored in the database:

UPDATE personal_info

SET salary = salary * 1.03

On the other hand, our new employee Bart Simpson has demonstrated
performance above and beyond the call of duty. Management wishes to recognize his

50

stellar accomplishments with a $5,000 raise. The WHERE clause could be used to
single out Bart for this raise:

UPDATE personal_info

SET salary = salary + $5000

WHERE employee id = 12345

DELETE

Finally, let's take a look at the DELETE command. You'll find that the syntax of
this command is similar to that of the other DML commands. Unfortunately, our
latest corporate earnings report didn't quite meet expectations and poor Bart has been
laid off. The DELETE command with a WHERE clause can be used to remove his
record from the personal _info table:

DELETE FROM personal_info

WHERE employee _id = 12345

JOIN Statements

Now that you’ve leamned the basics of SQL, it’s time to move on to one of the
most powerful concepts the language has to offer — the JOIN statement. Quite simply,
these statements allow you to combine data in multiple tables to quickly and
efficiently process large quantities of data. These statements are where the true power
of a database resides.

We’ll first explore the use of a basic JOIN operation to combine data from two
tables. In future installments, we’ll explore the use of outer and inner joins to achieve
added power.

We’ll continue with our example using the PERSONAL _INFO table, but first
we’ll need to add an additional table to the mix. Let’s assume we have a table called
DISCIPLINARY ACTION that was created with the following statement:

CREATE TABLE disciplinary_action (action_id int not null, employee_id int
not null, comments char(500))

This table contains the results of disciplinary actions on company employees.
You’ll notice that it doesn’t contain any information about the employee other than
the employee number. It’s then easy to imagine many scenarios where we might want
to combine information from the DISCIPLINARY_ ACTION and
PERSONAL INFO tables. '

Assume we’ve been tasked with creating a report that lists the disciplinary
actions taken against all employees with a salary greater than $40,000. The use of a
JOIN operation in this case is quite straightforward. We can retrieve this information
using the following command:

51

SELECT personal_info.first_name, personal_info.last name,
disciplinary _action.comments

FROM personal_info, disciplinary_action

WHERE personal_info.employee_id = disciplinary_action.employee_id

AND personal_info.salary > 40000

As you can see, we simply specified the two tables that we wished to join in the
FROM clause and then included a statement in the WHERE clause to limit the results
to records that had matching employee IDs and met our criteria of a salary greater
than $40,000.

Lesson 13.
Theme of lecture: MS Access Database Management system

Plan

Tables

Forms

Reports

Queries

Macros

Modules

Data types

Table relationships
Keys

Benefits of using relationships

A computerized database is a container of objects. One database can contain
more than one table. For example, an inventory tracking system that uses three tables
is not three databases, but one database that contains three tables. Unless it has been
specifically designed to use data or code from another source, an Access database
stores its tables in a single file, along with other objects, such as forms, reports,
macros, and modules. Databases created in the Access 2007 format have the file
extension .accdb, and databases created in earlier Access formats have the file
extension .mdb. You can use Access 2007 to create files in earlier file formats (for
example, Access 2000 and Access 2002-2003).

Using Access, you can:

Add new data to a database, such as a new item in an inventory

Edit existing data in the database, such as changing the current location of an
item

Delete information, perhaps if an item is sold or discarded

Organize and view the data in different ways

Share the data with others via reports, e-mail messages, an intranet , or the
Internet

52

The following sections are short descriptions of the parts of a typical Access
database:

- Tables;

- Forms;

- Reports;

- Queries;

- Macros;

- Modules.

Tables

A database table is similar in appearance to a spreadsheet, in that data is stored
in rows and columns. As a result, it is usually quite easy to import a spreadsheet into
a database table. The main difference between storing your data in a spreadsheet and
storing it in a database is in how the data is organized.

To get the most flexibility out of a database, the data needs to be organized into
tables so that redundancies don't occur. For example, if you're storing information
about employees, each employee should only need to be entered once in a table that
is set up just to hold employee data. Data about products will be stored in its own
table, and data about branch offices will be stored in another table. This process is
called normalization.

Each row in a table is referred to as a record. Records are where the individual
pieces of information are stored. Each record consists of one or more fields. Fields
correspond to the columns in the table. For example, you might have a table named
"Employees” where each record (row) contains information about a different
employee, and each field (column) contains a different type of information, such as
first name, last name, address, and so on. Fields must be designated as a certain data
type, whether it's text, date or time, number, or some other type.

Another way to describe records and fields is to visualize a library's old-style
card catalog. Each card in the cabinet corresponds to a record in the database. Each
piece of information on an individual card (author, title, and so on) corresponds to a
field in the database.

Forms

Forms are sometimes referred to as "data entry screens." They are the interfaces
you use to work with your data, and they often contain command buttons that
perform various commands. You can create a database without using forms by simply
editing your data in the table datasheets. However, most database users prefer to use
forms for viewing, entering, and editing data in the tables.

Forms provide an easy-to-use format for working with the data, and you can also
add functional elements, such as command buttons, to them. You can program the
buttons to determine which data appears on the form, open other forms or reports, or
perform a variety of other tasks. For example, you might have a form named
"Customer Form" in which you work with customer data. The customer form might

53

have a button which opens an order form where you can enter a new order for that
customer.

Forms also allow you to control how other users interact with the data in the
database. For example, you can create a form that shows only certain fields and
allows only certain operations to be performed. This helps protect data and to ensure
that the data is entered properly.

Reports

Reports are what you use to summarize and present data in the tables. A report
usually answers a specific question, such as "How much money did we receive from
each customer this year?" or "What cities are our customers located in?" Each report
can be formatted to present the information in the most readable way possible.

A report can be run at any time, and will always reflect the current data in the
database. Reports are generally formatted to be printed out, but they can also be
viewed on the screen, exported to another program, or sent as e-mail message.

Queries

Queries are the real workhorses in a database, and can perform many different
functions. Their most common function is to retrieve specific data from the tables.
The data you want to see is usually spread across several tables, and queries allow
you to view it in a single datasheet. Also, since you usually don't want to see all the
records at once, queries let you add criteria to "filter" the data down to just the
records you want. Queries often serve as the record source for forms and reports.

Certain queries are "updateable,” meaning you can edit the data in the
underlying tables via the query datasheet. If you are working in an updateable query,
remember that your changes are actually being made in the tables, not just in the
query datasheet.

Queries come In two basic varieties: select queries and action queries. A select
query simply retrieves the data and makes it available for use. You can view the
results of the query on the screen, print it out, or copy it to the clipboard. Or, you can
use the output of the query as the record source for a form or report.

An action query, as the name implies, performs a task with the data. Action
queries can be used to create new tables, add data to existing tables, update data, or
delete data.

Macros

Macros in Access can be thought of as a simplified programming language
which you can use to add functionality to your database. For example, you can attach
a macro to a command button on a form so that the macro runs whenever the button
is clicked. Macros contain actions that perform tasks, such as opening a report,
running a query, or closing the database. Most database operations that you do
manually can be automated by using macros, so they can be great time-saving
devices.

54

Modules

Modules, like macros, are objects you can use to add functionality to your
database. Whereas you create macros in Access by choosing from a list of macro
actions, you write modules in the Visual Basic for Applications (VBA) programming
language. A module is a collection of declarations, statements, and procedures that
are stored together as a unit. A module can be either a class module or a standard
module. Class modules are attached to forms or reports, and usually contain
procedures that are specific to the form or report they're attached to. Standard
modules contain general procedures that aren't associated with any other object.
Standard modules are listed under Modules in the Navigation Pane, whereas class
modules are not.

Data types
Every field has a data type. A field's data type indicates the kind of data that the
field stores, such as large amounts of text or attached files.

Table 10.

Fipid plams . Dsta Type Dascimion

nes

A data type is a field property, but it differs from other field properties as
follows:

You set a field's data type in the table design grid, not in the Field Properties
pane.

A field's data type determines what other properties the field has.

You must set a field's data type when you create the field.

Note You can create a new field in Access by entering data in a new column in
Datasheet view. When you create a field by entering data in Datasheet view, Access
automatically assigns a data type for the field, based on the value that you enter. If no
other data type is implied by your input, Access sets the data type to Text. If needed,
you can change the data type by using the Ribbon, part of the new Microsoft Office
Fluent user interface.

The following table shows how automatic data type detection works in
Datasheet view.

Office Access 2007

If you enter: creates a field with a data
type of:

John Text

http://www.contoso.com

You can use any valid Internet protocol prefix. For example, Hyperlink

http://, https://, and mailto: are valid prefixes.

| Number, Long
Integer

50,000 Number, Long

55

Integer

50,000.99 Number, Double

50000.389 Number, Double

12/67

The date and time formats recognized are those of your user Date/Time
locale.

December 31, 2006 Date/Time

10:50:23 Date/Time

10:50 am Date/Time

17:50 Date/Time

$12.50 Currenc

The currency symbol recognized is that of your user locale. y

21.75 Number, Double

123.00% Number, Double

3.46E+03 Number, Double

Table relationships

Although each table stores data about a different subject, tables in a database
usually store data about subjects that are related to each other. For example, a
database might contain:

A customers table that lists your company’s customers and their addresses.

A products table that lists the products that you sell, including prices and
pictures for each item.

An orders table that tracks customer orders.

Because you store data about different subjects in separate tables, you need
some way to tie the data together so that you can easily combine related data from
those separate tables. To connect the data stored in different tables, you create
relationships. A relationship is a logical connection between two tables that specifies
fields that the tables have in common.

Keys

Fields that are part of a table relationship are called keys. A key usually consists
of one field, but may consist of more than one field. There are two kinds of keys:

Primary key

A table can have only one primary key. A primary key consists of one or more
fields that uniquely identify each record that you store in the table. Often, there is a
unique identification number, such as an ID number, a serial number, or a code, that
serves as a primary key. For example, you might have a Customers table where each
customer has a unique customer ID number. The customer ID field is the primary key
of the Customers table. When a primary key contains more than one field, it is
usually composed of pre-existing fields that, taken together, provide unique values.
For example, you might use a combination of Jast name, first name, and birth date as
the primary key for a table about people.

Foreign key

A table can also have one or more foreign keys. A foreign key contains values
that correspond to values in the primary key of another table. For example, you might

56

have an Orders table in which each order has a customer ID number that corresponds
to a record in a Customers table. The customer ID field is a foreign key of the Orders
table.

The correspondence of values between key fields forms the basis of a table
relationship. You use a table relationship to combine data from related tables. For
example, suppose that you have a Customers table and an Orders table. In your
Customers table, each record is identified by the primary key field, ID.

To associate each order with a customer, you add a foreign key field to the
Orders table that corresponds to the ID field of the Customers table, and then create a
relationship between the two keys. When you add a record to the Orders table, you
use a value for customer ID that comes from the Customers table. Whenever you
want to view any information about an order's customer, you use the relationship to
identify which data from the Customers table corresponds to which records in the
Orders table.

[7 Reiationships

(e} “ Payment Typa -
Ltast Name 1S i Paid Date

First Name \ Noteg

Futf Name \ Tax Rate

E-mail Zddress \ A Tax Status
Company H W2 Status 1D

Job Title L L “Clstomerio
Business Phone Employee D

Hame Phone 3 Shipper B

kiobifa Phone Content Typz

Fax Numbar File Type

Address = Attachments

City Attachments.F
State Province Attathments.F
ZP/Fostal Code Aftachments.F »

. Figure 14. Benefits of using relationships

Keeping data separated in related tables produces the following benefits:

Consistency Because each item of data is recorded only once, in one table, there
i1s less opportunity for ambiguity or inconsistency. For example, you store a
customer's name only once, in a table about customers, rather than storing it
repeatedly (and potentially inconsistently) in a table that contains order data.

Efficiency Recording data in only one place means you use less disk space.
Moreover, smaller tables tend to provide data more quickly than larger tables.
Finally, if you don't use separate tables for separate subjects, you will introduce nuil
values (the absence of data) and redundancy into your tables, both of which can waste
space and impede performance.

Comprehensibility The design of a database is easier to understand if the
subjects are properly separated into tables.

57

Tip Plan your tables with relationships in mind. You can use the Lookup Wizard
to create a foreign key field if the table that contains the corresponding primary key
already exists. The Lookup Wizard creates the relationship for you.

Lessons 14-15.
Theme of lecture: Object-oriented approach. Create databases in the Delphi
environment

Plan

Overview of Delphi’s database features and capabilities

Delphi Database architecture

Delphi enables you to create robust database applications quickly and easily.
Delphi database applications can work directly with desktop databases like Paradox,
dBASE, the Local InterBase Server, and ODBC data sources. The Delphi
Client/Server edition also works with remote database servers such as Oracle, Sybase,
Microsoft SQL Server, Informix, InterBase, and ODBC data sources. Delphi client
applications can be scaled easily between mission critical network-based client/server
databases, and local databases on a single machine.

Building a database application is similar to building any other Delphi
application. This lecture assumes you understand the basic application development
techniques covered in the Delphi User’s Guide, including:

» Creating and managing projects;

* Creating forms and managing units;

« Working with components, properties, and events;

« Writing simple Object Pascal source code.

You also need to have a working knowledge of the Database Management
System (DBMS) your Delphi database applications access, whether it is a desktop
database such as dBASE or Paradox, or an SQL server.

Overview of Delphi’s database features and capabilities

A Delphi database application is built using Delphi database development tools,
Delphi data-access components, and data-aware GUI components. A database
application uses Delphi components to communicate with the Borland Database
Engine (BDE), which in turn communicates with databases. The following figure
illustrates the relationship of Delphi tools and Delphi database applications to the
BDE and data sources:

58

‘ Delphi EE"
Y

ReportSmith 1_1

A
Delphi Application
Repart

<\ \i

Boriand Database Ergine (BDEYDAPI |

. Local Data Source

Y [
] A
\ Y

ReportSmth Drivers

SQOL Links ’ IDDBC Drivers

Figure 15. Delphi Database architecture

The following table summarizes Delphi’s database features.
Table 1.1 Database features summary

Table 11.

Tool

Purporé;

Data Access components

Access databases, tables, stored
procedures, and custom component
editors.

Data Control components

Provide user interface to database tables.

Database Desktop (DBD)

Create, index, and query Paradox and
dBASE tables, and SQL

databases. Access and edit data from all
sources.

ReportSmith

Create, view, and print reports.

59

Borland Database Engine (BDE) Access data from file-based Paradox and
dBASE tables, and from
local InterBase server databases.

BDE Configuration Ultility Create and manage database connection
Aliases used by the BDE.
Local InterBase Server Provides a single-user, multi-instance

desktop SQL server for
building and testing Delphi applications,
before scaling them up to a

production database, such as Oracle,
Sybase, Informix, or InterBase
on a remote server.

InterBase SQL Link] Native driver that connect Delphi

applications to the Local InterBase
LServer.

|

These features enable you to build database applications with live connections to
Paradox and dBASE tables, and the Local InterBase Server through the BDE. In
many cases, you can create simple data access applications with these components
and their properties without writing a line of code.

The BDE is built into Delphi components so you can create database
applications without needing to know anything about the BDE. The Delphi
installation program installs drivers and sets up configuration for Paradox, dBASE,
and the Local InterBase Server, so you can begin working with tables native to these
systems immediately. The BDE Configuration Utility enables you to tailor database
connections and manage database aliases.

Advanced BDE features are available to programmers who need more
functionality. These features include local SQL, which is a subset of the industry-
standard SQL that enables you to issue SQL statements against Paradox and dBASE
tables; low-Jevel API function calls for direct engine access; and ODBC support for
communication with other ODBC-compliant databases, such as Access and Btrieve.

Delphi includes Borland ReportSmith, so you can embed database report
creation, viewing, and printing capabilities in Delphi database applications. Delphi
also includes the Database Desktop (DBD), a tool that enables you to create, index,
and query desktop and SQL databases, and to copy data from one source to another.

The Local InterBase Server is a single-user, multi-instance, 16-bit, ANSI SQL-
compliant, Windows-based version of Borland’s 32-bit InterBase SQL server that is
available for Novell NetWare, Windows NT, and Unix.

SQL Links provide Delphi applications with SQL access to data residing on
remote servers, including Sybase, Microsoft SQL Server, Oracle, and Informix.

60

he

—

When an SQL Link driver is installed, SQL statements are passed directly to
server for parsing and execution.

Component Purpose

TDamaSwaroe Acts as a conduit betwe
> has TT

L

i data-aware

en a TTable, TQuery, TStosedProc comtposen
DBCrid.

e data-

P otiery ses SQL staterments w retrieve d
w mare data-a

TSworedlrac
Thatabase
TBarchMove

TRepors

When building a database application, you place data access components on a
form, then assign them properties that specify the database, table, and records to
access. They provide the connection between a data source and Data Control
components. At run time, after an application is built and compiled, data access
objects are not visible, but are “under the hood,” where they manage data access.

Four data access components deserve special mention. Most forms provide a
link to a database with a TTable or TQuery component (or through a user-defined
component based on the normally hidden abstract class, TDataSet, of which TTable
and TQuery are descendents). Other forms provide a link to a database with
TStoredProc, also a descendent of TDataSet. In turn, all forms must provide a
TDataSource component to link a TTable, TQuery, or TStoredProc component to
data control components that provide the visible user interface to the data.

TTable, TQuery, (and TStoredProc, when it returns a result set) contain a
collection of TField components. Each TField corresponds to a column or field in the
table or query. TFields are created.
 Automatically, when TTable, TQuery, or TStoredProc are activated.

* At design time, using the Fields editor.

The TQuery component provides a tool for data access using SQL statements,
such as a SELECT statement, to specify a set of records and a subset of columns from
a table. TQuery is useful for building local SQL queries against Paradox and dBASE
data, and for building client/server applications that run against SQL servers.

Every dataset that supplies a data control component must have at least one
TDataSource component. TDataSource acts as a bridge between one TTable, TQuery,
or TStoredProc component and one or more data control components that provide a
visible user interface to data.

TTable and TQuery can establish connections to a database through the BDE,
but they cannot display database information on a form. Data Control components

61

provide the visible user interface to data, but are unaware of the structure of the table
from which they receive (and to which they send) data. A TDataSource component
bridges the gap.

3. Laboratory sessions
Laboratory session Nel

The theme: Create a table in the MS Access 2007 Database Mangement
system. Building Table Relationships

The aim of lesson: Explain the meaning of Table relationships in MS Access and
develop the skills and abilities to create table; get to know Keys, Primary key,
Foreign key and establish relationships between the tables in an Access 2007
database; increase students’ interests in creating and programming database system.

Content of lesson

Table relationships

Although each table stores data about a different subject, tables in a database
usually store data about subjects that are related to each other. For example, a
database might contain:

A customers table that lists your company’s customers and their addresses.

A products table that lists the products that you sell, including prices and
pictures for each item.

An orders table that tracks customer orders.

Because you store data about different subjects in separate tables, you need
some way to tie the data together so that you can easily combine related data from
those separate tables. To connect the data stored in different tables, you create
relationships. A relationship is a logical connection between two tables that specifies
fields that the tables have in common.

By now, you have set up the tables you need for your database, and created
fields for those different tables. Relationships provide Access 2007 with the means to
bring that information together for you when you need it.

This lesson explains how to establish relationships between the tables in an
Access 2007 database. You will leam how to read and manipulate the relationship
map. You will also learn about Primary and Foreign Keys, relationship types, and
about referential integrity.

Establishing Relationships

To establish a relationship between tables:

Click the Relationships command in the Show/Hide group on the Database
Tools tab in the Ribbon.

NOTE: Tables must be closed in order to establish relationships.

62

Figure 1.1 Relationships Command
When the Show Table dialog box appears:
Select each table name and click Add for the tables you want to relate.
When you are done, Close the Show Table dialog box

Bkl

Lustasndrg

Crders

Figure 1.2 Show Table Dialog Box

You should now see a relationship map that contains all the tables that were selected.

Figure 1.3 Relationship Map

Moving Tables in the Relationship Map
To move a table that appears in the relationship map:
Place your mouse over the table you want to move.
Hold down the left mouse button, and drag the table to a new location.

63

Release the mouse button to drop the table in its new place.
Understanding the Relationship Map
The relationship map lists all of the tables that were selected to relate, and all of

the fields that were set up for that table previously. Notice that the first field has a key
icon next to it. This is the Primary Key for the table.

Figure 1.4 Primary Keys

Primary and Foreign Keys

A Prnmary Key is the first field in each table of the database. You may recall
that this field auto numbers by default, so that every record in the table has its own
unique number to identify it. Access uses this number to quickly pull information
together for you when you run queries or reports, which are covered later.

In the example above, the primary key for the Customers table is Customer 1D,
the primary key for the Orders table is Order ID, and the primary key for the Books
table is Book ID.

A Foreign Key is a field that is the Primary Field in its own table, but that shows
up in another table. If you look closely at the Orders table, the fields Customer 1D
and Book ID appear there, as well as in their own respective tables. These fields are
the primary key in their own tables, but in the Orders table, they are considered
Foreign Keys.

Figure 1.5 Foreign Keys

Relating Tables
There are a few ways to establish relationships between tables:
e Using the Edit Relationships command located on the Design tab of the Ribbon
¢ Using the Drag and Drop method

64

Both methods give you the same end result, but the Drag and Drop method 1s much
easier and saves you several steps.

Relating Tables with the Drag and Drop Method
It is easy to relate tables from the relationship map:
Select a field name from one table by holding down the left mouse button.

&

Figure 1.6 Relationship Map

Drag the field name from the one table to the other table in the desired
relationship.Drop the first field name onto the field name that you want to relate by
releasing the left mouse button. In the example above, we selected the Book ID field
from the Books table, and dragged and dropped it on the Book ID field in the Orders
tabte. The Edit Relationships dialog box appears.

Relatio ¥

T : Related Tabl : Ty

able/Query _iaa ed Tat B[Quer_y Croate |
:] Cancel |
- - e —Jﬁin Type.. |
[JErforce Referential Integrity LCreate New..

Book iD ¥ Book D i

Relationship Type: One-To-Many

Figure 1.7 £dit Relationships Dialog Box

Select the Enforce Referential Integrity option. This option is explained in detail
below. Click Create.

65

Understanding Types of Relationships

Access 2007 allows for several different types of relationships. These include:
e One to One '
¢ One to Many
e Many to Many

The relationship type you will come across most frequently, and the one created in
our bookstore scenario, is the One to Many relationship.

One to Many

The One to Many relationship means that data for that field will show up a
single time in one table, but many times in the related table. For example, let's look at
one of the book titles in our bookstore. The Book ID for that book should appear only
once in the Books table, because that table lists every title that we stock. But it will
probably appear many times in the Orders table, because we hope that it gets ordered
by many peopie many times.

The symbols for the One to Many relationship look like this:

Gne to Many One to Many
Figure 1.8 One to Many Relationships
Enforcing Referential Integrity

In the Edit Relationships dialog box, an option to Enforce Referential Integrity
appears. You should click Enforce Referential Integrity to make sure that we NEVER
have an order for a book that doesn't appear in our Books table. Selecting this option
tells Access to check for these things when someone is working with your data
records.

Editing Existing Relationships
Access 2007 allows you to edit relationships that already exist. This can be done

using the Edit Relationships command on the Ribbon. However, a much simpler way
66

is to simply double click on the link that appears in the relationship map. Either
method brings up the Edit Relationships dialog box, where you can change your
settings.

Keeping data separated in related tables produces the following benefits:

Consistency Because each item of data is recorded only once, in one table, there
is less opportunity for ambiguity or inconsistency. For example, you store a
customer's name only once, in a table about customers, rather than storing it
repeatedly (and potentially inconsistently) in a table that contains order data.

Efficiency Recording data in only one place means you use less disk space.
Moreover, smaller tables tend to provide data more quickly than larger tables.
Finally, if you don't use separate tables for separate subjects, you will -introduce null
values (the absence of data) and redundancy into your tables, both of which can waste
space and impede performance.

Comprehensibility The design of a database is easier to understand if the
subjects are properly separated into tables.

Tip Plan your tables with relationships in mind. You can use the Lookup Wizard
to create a foreign key field if the table that contains the corresponding primary key
already exists. The Lookup Wizard creates the relationship for you.

Laboratory session Ne2
The theme of lesson: Create a query in the MS Access DBMS
The aim of lesson: Explain the meaning of Query in MS Access and develop the
skills and abilities to create a query, to sort records in the query, learn to put the
criteria on different rows; get to know type of query in an Access 2007 database;
increase students’ interests in creating and programming database system.

Content of lesson

Queries are the second structure in Access. Tables hold the information, quenes
contain stored questions. Let’s create one. It’s much easier that way.
Cl1ck the Create tab, and then the Query Design button at the right hand end

Tables | Queries ' Both

Author

Figure 2.1.
If you ever need help in building a query,
you can also use the Query Wizard. But for now,
we’ll take the direct route.
Figure 2.2

67

Access asks you which tables you want to ask questions about. First off, let’s
just take a look at the Book table. We can add the Author table later.

The real power in Access is the ability to easily deal with multiple tables at
once, but one step at a time.

Click on Book, and click the Add button. The window stays open, so click the
Close button.

Access presents you with the query design page.

X

{0 Query ¢

< Fiepct: : wh
Tabte: | {

Sort;
SAows - 3] -

Criterim:

Tnamtock 89 o

You can make some adjustments to the way the layout looks by dragging the
central divider up or down, and there are shortcuts at the bottom right, in the status
bar, that let you change the type of view you are using. More about those later.

The upper portion of the screen contains all of the included tables, with a list of
the fields. The lower portion is where the questions are asked.

First, you need to choose which of the fields in the table you want to either ask
questions about, or wish to include in the answer. To choose, double-click the field,
or drag It to the grid below.

For our example we want to choose Author, Title & Rating.

Field: | suthor Tit_!'e) m g

Table: |Boak ‘Book ‘Eook

Sort: { : _

Shavs: [+,)) 2] 0
Criteria:

oF.
4 i
Figure 2.4

Once you have the fields in the grid, there are a lot of choices to make. They
work line by line.

We have already chosen the fields, and the fables are added automatically. The
next thing is the sort. To sort the books by rating for instance, click in the sort box for
that column, and change the setting to Ascending or Descending.

68

You can sort by multiple columns. The priority is from left to right, so if you
wanted to sort by Rating and then Title, you would need to rearrange the columns.

You can just select by the grey bar at the top and drag them around.

Field: |Rating Title “suthar L
Table: |Baok Boak Boak
Serts | Descznding Ascending :
Show: % | : i |
Criteria)
o . .
5
Figure 2.5

The Criteria row is a little more complex, but it’s very easy to use once you get
used to it. Criteria are specifications for which records (rows) from the table to show.
And for the technical types reading, these are generally what is known as AND
criteria. That is, a/l of the criteria need to be met. If instead you wish to use OR
critera (that means that any of the criteria can bet met) then put the criteria on
different rows. You can use as many rows as you wish from the one labelled Criteria
downwards.

In our case, we want to only see books where the Title starts with “°S’, and the
rating is better than 2. The “"S’ criteria also includes what is known as a wild card.
That is, the title needs to start the letter S, but anything at all is permitted after that.

Numeric criteria are allowed to be defined as limits, rather than specific values,
so in the case we can use the “™’ operator.

We could spend the whole day talking about criteria and wildcards, but let’s
move or.

Figld: [Rating Titte s author =)
Table: |Boak Book Baook
SO | Descending Ascending :
Show: ¥ [#] ¥ N
Criteria | »2 Like "5¢
ar: ’
v
<l r

Figure 2.6 Criteria dialog window

Now that the we have defined the question we wish to ask, we 4
can pose it to Access, and view the answer. Click the View button in’
the ribbon or the datasheet view button in the status bar. You can
flick back and forth between design and datasheet to make further
changes to the query. Figure 2.7 -Fesults

69

i Queyt

Ratin < .. Title -

ﬂ.Sea‘horse in the Sky Cooper
4 Star Beast Heinlein
4 Stra rinastrange land Heinlein

Figure 2.8 Query table

It’s important to note that as a general rule, the datasheet view from a query is
live. That is, if you make changes to the query results then you make changes to the
table data.

Finally, you can save the query for later. There is some confusion with this at
times. Saving the query saves the question, not the answer. So that means that next
time you run the query, if the data in the table has changed, then the answer might
also change. There some other options to grab a snapshot of the data later on if
necessary.

Click the Save button in the quick toolbar at the top left of the Access window.
Remember that queries are saved along with the tables inside the one Access file on
your hard drive.

Exdemal Data Datahase Tools . Dasign

Figure 2.9 Save button

You often need to connect tables together in queries. For instance in this case,
we could add the Author table so that we can make use of the information in it for
sorting or further criteria.

As it happens, the lookup that we set up for the Author table means that we
already have access to the Author’s last name, but let’s just pretend we wanted to sort
the output by the author’s first name instead. After all, these guys (or at least the few
who are still alive) are friendly enough. Let’s call them Isaac and Robert, right? Oh,
hold on. Those two are dead.

To make this work, add the Author table to the query.

UEEY Fot

Flgure 2.10 uery page

While in Design View, click the Show Table button and add the Author table to
the grid.

70

¥ o

R (=]

1
i
author = Lzst name
Title i Fiest name
Fages i
Rating i {
Finished i E
i
o
4 Lt >
Flzia: | Ratng S Title Authar I el
Table: |&sok ipoak Soak
Sart: |Cescending iascanding
Shaow Lt jd) [
Criteria: [»2 Live S
e
~
4 >

Figure 2.11. Table relationships

Because of the lookup that was set up, Access already knows how the tables are
related, so you don’t need to worry about that. Drag the First Name field down into

the criteria block, then drag it off to the left so you can sort it as a priority.

{4 Bests books

: >
—y -
Last name ’
Firat namea i
-
4 i »
Eield: |First name Rating Title Author 2%
Table: | author Book Boak Baak
Sort: ascending o Descendlng Ascending 5
Show: 2] = sl 2]
Criteria: #2 Like "5
Lo
w
o [y »

Figure 2.12. Click the Datasheet View button to see the difference.

Best § books

v Ratir - . T;zie‘ e or -
4 Seahorse in the Sky Cooper
4 StarBeast Heinlein
4 Stranger in a strange land 'Heinlein
Figure 2.13 Query table as outcomes Figure 2.14

A Microsoft Access Tutorial on Query types
The query we just built, the default type in Access, i1s called a Select query. It’s
essentially a view of the answer to a question. The other types do a number of

71

specific things that might be useful later. I won’t go into too much detail here, but
some pointers might help.

Most of these other queries are what is known as Action queries. That
is because they actually change data in tables. No changes are made until you click
the Run button (the Datasheet view only previews the results) and you will be warned
that changes are about to be made.

Update

An update query is used to make changes to the table data in one hit, rather than
dealing with the records one by one. For instance, perhaps an author might change his
name, or admit to having written a stack of books under a nom-de-plume. An update
query would let you select the appropriate records and then change them all at once.

Make Table

A Make Table query works the same way as an Update, but puts the results in a
new table. This might be useful where for some reason you need to maintain both sets
of data separately.

Append

An Append query lets you select records from one table and add them to the end
of another. The most common use for this is for archiving records from a main table
to a secondary one.

Delete

A Delete query is extremely useful, but care needs to be taken with using it. This
query lets you select some records from a table, and then delete them.

Other

The other types of query (Union, Cross-tab, Pass-through and Data Definition)
are for advanced use, and I won’t cover these here.

That’s it for now, until I’m back with a post on Access Forms.

Let me know how it goes with queries, and whether there are any difficulties [
can help with in the comments.

Laboratory session Ne3

The theme of lesson: Create forms in the MS Access Database
Management system

The aim of lesson: Explain the meaning of Forms in MS Access and develop the
skills and abilities to create a different type of form, to learn use different components
in the database; get to know type of forms in an Access 2007 database; increase
students’ interests in creating and programming database system.

Content of lesson

Open Your Access Database

72

Recent Documents

Figure 3.1 The main page
First, you'll need to start Microsoft Access arid open the database that will house
your new form.
In this example, we'll use a simple database I've developed to track running
activity. It contains two tables: one that keeps track of the routes that I normally run

and another that tracks each run. We'll create a new form that allows the entry of new
runs and modification of existing runs.

Sellect the Table for your Form

Raoutes
~) Routes : Table
Riins

_:j Runs: Table

b4

Figure 3.2 List of tables
Before you begin the form creation process, it's easiest if you pre-select the table
that you'd like to base your form upon. Using the "All Tables" pane on the left side of
the screen, locate the appropriate table and double-click on it.

 In our

example, we'll build a form based upon the Runs table, so we select it, as shown in
the figure above.

Select Create Form from the Access Ribbon
o ¥ :

Figure 3.3. Form create window
73

Next, select the Create tab on the Access Ribbon and choose the Create Form
button, as shown in the image above.

View the Basic Form

Figure 3.5. The form page
Access will now present you with a basic form based upon the table you
selected. If you're looking for a quick and dirty form, this may be good enough for
you. If that's the case, go ahead and skip to the last step of this tutorial on Using Your
Form. Otherwise, read on as we explore changing the form layout and formatting.

Arrange Your Form Layout

After your form is created, you'll be placed immediately into Layout View,
where you can change the arrangement of your form. If, for some reason, you're not
in Layout View, choose it from the drop-down box undemeath the Office button.

From this view, you'll have access to the Form Layout Tools section of the
Ribbon. Choose the Format tab and you'll see the icons shown in the image above.

While in Layout View, you can rearrange fields on your form by dragging and
dropping them to their desired location. If you want to completely remove a field,
right-click on it and choose the Delete menu item.

Explore the icons on the Arrange tab and experiment with the various layout
options. When you're done, move on to the next step.

74

Use Your Form

Forvms W bernor o

Sty by

Eang s L1 Wierww

e s gy ey Wl Eewos

s

Figure 3.6. Form view window

You've put a lot of time and energy into making your form match your needs.
Now if's time for your reward! Let's explore using your form.
To use your form, you first need to switch into Form View. Click the drop-down
arrow on the Views section of the Ribbon, as shown in the figure above. Select Form
View and you'll be ready to use your form!

Once you're in Form View, you can navigate through the records in your table
by using the Record arrow icons at the bottom of the screen or entering a number into
the "1 of x" textbox. You can edit data as you view it, if you like. You can also create
a new record by either clicking the icon at the bottom of the screen with a triangle
and star or simply using the next record icon to navigate past the last record in the
table.

Your new asset-tracking database is already saving time and money, but some of
your coworkers don't like using Datasheet view to enter data. They find that a grid of
columns and rows isn't that easy to use. Not a problem: Forms to the rescue.

A form is a screen that allows you to enter, change, and view the data in a
database. Think of forms as windows into your data that help users understand and
work with that data.

Let's take a quick look at what goes into a form:

1. Forms are made up of controls, such as text boxes, buttons, document tabs,
and drop-down lists, grouped in a way that makes them easy to use and helps you get
work done.

2. The controls in the form are usually bound, or connected, to the tables or
queries in your database - but not always. For example, a control that displays your

75

corporate logo doesn't have to be bound to a table field. It can just point to the image
it displays.

In addition to entering data, you can use forms in other ways. For example, you
can create a form that asks for input, and then generates a custom report based on that
mput.

Creating a Form

Access 2007 has several automatic tools for creating forms. These tools are
located in the Forms group on the Create tab in the Ribbon, as seen below:

o o

Figure 3.7 Forms Command Group

The Access 2007 forms tools include:

The Form command makes a basic form, showing a single record at a time.

The Split Form command creates a form showing one record on top, and
includes the datasheet view of entire source table on the bottom.

The Multiple Items command creates a form that shows all the records at once,
which looks very similar to the source table in datasheet view.

The Form Wizard is hidden under the More Forms command. It walks you
through the process of creating more customized forms.

To Create a Form using the Form Command

The basic Form command is the one we suggest, because it allows the person
entering data to see just one record at a time. It also includes all the fields in your
source table for you, and you can modify the layout of the basic form to hide fields or
add controls.

To create a form using this command:

Begin by highlighting the table you wish to use as a source table.

With the source table highlighted, select the Form command from the Forms
command group in the Create tab on the Ribbon.

The new form is created and opens in the object pane.

The newly created form has the same name as the source table by default. You
can give the form a new name by saving the form. You will be prompted to give the
form a name.

Using Forms to Enter Data

Populating a database is easy once you have a basic form in place. Record
navigation works the same way for forms as it did for tables. The Navigation Bar is
located in the bottom left of the object pane. The Navigation Buttons work the same

76

way they did for the tables, also. The following picture shows the navigation buttons
for a for

| Hoaks

Figuré 3.8 Form Navigation Buttons
To Add a Record using a Form

To add a record to the database using a form:

Navigate to a new record, either by using the New Record navigation button, or
the New command in the Records group on the Ribbon.

Then, simply add the new data.

Your data must be entered using an acceptable format. The acceptable formats
were established when the field properties were set.

Finally, you must save the record.

Save by using either the Save command on the Ribbon, or by progressing to
another record using the New (Blank) Record navigation button. Moving to a new
record saves the most recently entered record. However, it may be necessary to
refresh the table in Datasheet View to see the newest record.

To Edit Records using a Form

Just like 1n a table, the database user can edit records from a form using the Find
and Replace command. This command works exactly the same way for a form as it
does in a table.

Creating a Drop Down List
Using a drop down list on a form can increase the integrity of the data in the
database, because drop down lists force the form user to select one of the pre-set

options in the list to populate the field. These types of form controls are relatively
easy to set up using the Combo Box.

77

To Create a Drop Down List using a Combo Box Control

With the form opened in Design View, select the Combo Box command in the
Controls group on the Design tab in the Ribbon
s : e

T

¥

Cambo Box command

R

3
4

H s

Figure 39 Comzbo de Command

Drag and drop the Combo Box sizing tool to create the Combo Box where
desired on the form.

& Datan

Left click to drag the Combo
Box sizing tool to the

desired size, then release .
the mouse button to drop the |

g = / Combe Box into place. .

i ¥ Fam Feutar

Figure 3.10 bombo Box Sizing Tool

78

The Combo Box Wizard appears.

€ Doy M conmiier Box to ook up e valkies s @ balle ot gy

ol fype 0 e Vakies it waet,

< el o pesordon avy fovm based on e valee T sorented by
O b

cmaisd e, |

Figure 3.11 Combo Box Wizard

Choose the desired option from the Wizard, and click Next.

Because the middle option was selected in the example above, the Wizard
progresses to the next step, which asks for the values to be typed into a small table.
Combo Bax Wizard _ e 3

What values do you want to see in your combo box? Enter the number of columins you want
in the list, and then type the values you want in each cell,

To adjust the width of a column, drag :ts right adge to the width vou want, or doublelick the
right edge of the coumn heading o get the best &t

Humber of columns: 1

Cali

Cancel

Mext =

79

Next, the Wizard asks what to do with the entered values. Access can either
remember the values for later use, or can populate a field with the entered values. Use
the drop down list to select which field Access should use to store the values.

ot Whe vakae for iater Lse

nat vk 1 s Sl -

Lo | .
iFigure 3.13 Combo Box Wizard

Once the desired option has been selected, click Next.

Finally, the Wizard gives the Combo Box a generic name, which may be
meaningful to you later if there is ever a need to adjust the properties of this or
another Combo Box. If you choose, give the Combo Box a name and click Finish.

Whatever name is entered will appear as a label on the form. This label may be
deleted, if desired.

Switch to Form View to see how the Combo Box works. The Category drop
down list appears on our Books form, as seen below.

} Bk 7Y goaks U0 : ; e : e

Figure 3.14. Books Form Drop Down Category List

Laboratory session Ned
The theme of lesson: Create a report in the MS Access Database
Management system
The aim of lesson: Explain the meaning of reports in MS Access and develop the

skills and abilities to create a different type of reports, to learn To Create a Report
Based on a Table using the Report Command, Create a Report Based on a Query, to
Group Items on a Report, to Format a Report in Layout View; get to know type of
reports in an Access 2007 database; increase students’ interests in creating and
programming database system.

Content of lesson

Now that you know how to use queries to analyze the data in a database, it is
time to find out how to create a report that will make the data meaningful to someone
else. This lesson will show you how to create a report using the Report conmand. It
will also show you how to use grouping options and query limits to make the report
easier to read, as well as identify several report formatting and layout options that can
be set in Layout View. Finally, you will see how to use Print Preview and how to
save the report.

Using Reports To Make Data Meaningful to Others

As you know, queries make the data in a database meaningful to you.
Sometimes, though, you need to share that data with someone else. A report is an
effective way to present your data using an attractive layout. The text can be
formatted in an Access report like it can be in Word documents.

Microsoft Access 2007 offers tools that allow you to create and format a report.
The Report Wizard walks you through the steps of creating a report. The Report
command, however, is much easier to use, and all of the formatting options are still
available to you in Layout View once the report is created. With these tools, you can
create a report based on a table or on a query.

Creating a Report Based on a Table

One of the easiest ways to create a report is using a table as the source of the
report. For example, in our bookstore scenario we have a table that lists all of the
books in our inventory. We want to create a Book Price List report that lists all of the
details for each book in our store's inventory. The Report command makes this
incredibly easy, as it automatically includes every field in the source table in the
report.

To Create a Report Based on a Table using the Report Command

To create a report based on a table using the Report command:

81

Choose the table you wish to use as the source of your report. To do that, you
can either open the table, or just highlight the table name in the Navigation Pane. In
our example, we used the open Books table to create the report.

JFiguré 4.1 Repon\ %rom BE)olks Table

Select the Report command on the Create tab in the Ribbon, as seen above.

The report 1s automatically generated and includes every field in the table in
order of their appearance in the table. This can be seen in the example below, which
was created form the table above.

P Dime -

Figure 4.2 Book Price List
The layout and formatting of the report can be manipulated in Layout View.

Creating a Report Based on a Query

Access 2007 can create a report using a query as the source, as well. The process
for creating a report based on a query is identical to the process for creating a report
based on a table that was outlined on the previous page. And just like when making a
report from a table, every field and record that appears in the query results will
appear on the report.

To Limit the Number of Records in a Report

82

It is possible to limit the number of records in a report, provided that the report
was based on a query. The limit is set in the query itself, using the query design
screen.

To limit the records returned in a query:

Open the query in Design View

Use the Return option in the Query Setup command group to set the number of

records you want to see in the query results and the final report.

T ek U Besveliers by Cutegory

i 4; o Set the num

s by Extrgacy

Figure 4.3 Return Limit

e Click Run! to make sure the query results look like you want the report to
look.

e Create the report using the Report command on the Create tab
¢ Format the report as desired.

Grouping Items on a Report

Grouping items on a report can make it much more readable. Microsoft Access
2007 offers a quick and easy way to add grouping to a report.

To Add Grouping to a Report

To add a level of grouping to a report:

With the report open, select the Group & Sort command from the Grouping &
Totals command group on the Format tab in the Ribbon.

505

fpl

Flgure44 G'r'oijl‘;,ing Co;ﬁ}ﬁand for Reportg k

83

This opens a Group, Sort, and Total dialog box in the lower portion of the
window.

b mainn T S mooms

3 K

0 Add s group 2§ Add o sert

Figure 4.5 Group, Sort, and Total Dialog Box

In the Group, Sort, and Total dialog box, select Add a group.
Select the field you wish to group by from the drop down list. We chose to
group our list by Category.

Figdre 4.6 ‘G”rouping Drop Down List \

84

Hiowm Lok 3 R s 4404

When you release the mouse button, the report will now appear with items
grouped. Our report is grouped on Category now, as seen below.

G ook S &

Ml Reaoks Pumsibay, Dncemives 16, 200X

Figure 4.7 Books Price List Grouped on Category »
The Group, Sort, and Total dialog box will remain open until you close it.

Formatting a Report in Layout View

Access opens the created report in Layout View, so that you can easily make
modifications. In Layout View, you can change the look of your report in many
different ways, including:

deleting columns and other report elements

moving and resizing columns

adding a logo

changing the title and other text on the report headings

applying a report style with AutoFormat

modifying the page layout

To Delete a Column or Other Report Element

To delete a column or other report element:
Highlight the element by clicking on jt.

Hit the Delete button on your keyboard.

To Move a Column or Other Report Element

To move a column or other report element:

Highlight the element by clicking on it.

Drag and drop the element to a new location on the report.
To Re-size a Column or Other Report Element

To re-size a column or other report element:
8s

Highlight the element by clicking on it.
Drag and drop the edge of the element to the new size on the report.
To Add a Logo to the Report

To add a custom picture or company logo to a report;
Click on the Logo command on the Format tab in the Ribbon.

e 7

Figure 4.8 Logo Command for Report

When the Insert Picture dialog box opens, find the pictule.

{ -

Figure 4.9 Insert Picture Dialog Box

Click OK.
To Modify the Title of the Report

To modity the title of a report:
Click on the Title command on the Format tab in the Ribbon.
1y i 2 Y S e 2 RO Tk

e
p 4

Figure 4.10 Title Command for Report

86

When the highlight appears, type in the new title.

To Modify Text in Report Headings

If you don't like the standard font face and size that Access used to create your
report, you can modify them using common Microsoft Office text formatting
commands. You can modify the size, font face, font color, alignment, and much
more. They all work basically the same way:

Highlight the text you want to change

Select the formatting option you wish from the lists that appear when you click

on a command.

Figure 4.11 Text Commands for Report

The change appears when you release the mouse button.
To Apply an AutoFormat Style

Like with forms, Microsoft Access 2007 offers a variety of report styles in the
AutoFormat command. To apply a style:
Click on the AutoFormat command in the Ribbon.
Fat el e 8 Ao s v Ly

® vingy

v Figure 4.12 AutoFormats for Report

Select a format from the drop down list. The change is applied instantly.
To Change the Page Layout

When a report is created, it opens in Layout View, like the one in the picture

below. The dotted lines are showing where the edge of the page will be in Report
View.

87

) Baeks | Beadseliaes by Category L Sestorions by Category

Baty's Fast Steps Fad

e Basies: Lag

or Basics

Buping the Right Computer ey

Sage Lotl

Figure 4.13 Report in Layout View

To change the page layout options:

Switch to Print Preview using the Views command in the Ribbon.

O i 9

“,

@

e

fxeate Extecimat Data

&

%

1
G Rt Wew
SSs

$ st Vs

Feseenss ¥ U

Figure 4.14 Pl‘i;l‘t Preview Command

Fepnse Lagona Tuny

$H0%; LAPROA

Select the layout option you wish to alter from the Page Layout command group

on the Ribbon.

Figure 4.15 Page Layout Options for Repon

All of the standard Microsoft page layout options are available, including:Page

Layout Option Description

88

Margins To set the margins for narrow, wide, or normal
Orientation To select either a Portrait or Landscape orientation
Size To set the paper size

Saving a Report

When you have created and modified a report and try to close it, Microsoft
Access 2007 will prompt you to name and save the report. If you do not ever need
this report again, you need not save it. However, if you think you may want to
publish it again, it is best to save.

To Save a Report

As with all Access objects, to save a report:

Right click on the report tab.

Choose Save from the list that appears.

When the Save as dialog box opens, give the report a name.

¥ e

Bestuelers G Ctmpory

| S—— i

Figure 4.16 Save as Dialog Box

Click OK.

Laboratory session Nt5
The theme of lesson: Create a macros in the MS Access Database
Management system
The aim of lesson: Explain the meaning of macros in MS Access and develop
the skills and abilities to create a different type of macroses; get to know type of
reports in an Access 2007 database; increase students’ interests in creating and
programming database system.

Content of lesson
Macros

In Microsoft Office Access 2007, you can define a macro to execute just about
any task you would otherwise initiate with the keyboard or the mouse. This article
introduces you to the unique power of macros in Office Access 2007 — their ability
to automate responses to many types of events without forcing you to learn a

89

programming language. The event might be a change in the data, the opening or
closing of a form or a report, or even a change of focus from one control to another.

Uses of macros

Macros are particularly useful for building small, personal applications or for
prototyping larger ones. Office Access 2007 provides various types of macro actions
that you can use to automate your application. With macros, you can;

Open any table, query, form, or report in any available view or close any open
table, query, form, or report.

Open a report in Print Preview or Report view or send a report directly to the
printer.

Send the output data from a report to a Rich Text Format (.rtf) file, a Windows
Notepad (.txt) file, or a Snapshot (.snp) format file. You can then open the file in
Microsoft Word or Notepad.

Execute a select query or an action query. You can base the parameters of a
query on the values of controls in any open form.

Include conditions that test values in a database, a form, or a report and use the
results of a test to determine what action runs next.

Execute other macros or execute Visual Basic functions. You can halt the
current macro or all macros, cancel the event that triggered the macro, or quit the
application.

Trap errors caused during execution of macro actions, evaluate the error, and
execute alternate actions.

Set the value of any form or report control or set selected properties of forms
and form controls.

Emulate keyboard actions and supply input to system dialog boxes.

Refresh the values in forms, list box controls, and combo box controls.

Apply a filter to, go to any record in, or search for data in a form's underlying
table or query.

Execute any of the commands on any of the Access Ribbons.

Move and size, minimize, maximize, or restore any window within the Access
workspace when you work in multiple-document interface mode.

Change the focus to a window or to any control within a window or select a
page of a report to display in Print Preview.,

Display informative messages and sound a beep to draw attention to your
messages. You can also disable certain warning messages when executing action
queries.

Rename any object in your database, make another copy of a selected object in
your database, or copy an object to another Access database.

Delete objects in your database or save an open object.

Import, export, or attach other database tables or import or export spreadsheet or
text files.

Start an application and exchange data with the application using Dynamic Data
Exchange (DDE) or the Clipboard. You can send data from a table, query, form, or

50

report to an output file and then open that file in the appropriate application. You can
also send keystrokes to the target application.

Consider some of the other possibilities for macros. For example, you can make
moving from one task to another easier by using command buttons that open and
position forms and set values. You can create very complex editing routines that
validate data entered in forms, including checking data in other tables. You can even
check something like the customer name entered in an order form and open another
form so that the user can enter detailed data if no record exists for that customer.

Working with the Macro design window

When creating a macro, begin by opening the database with which you are
working.

On the Create tab, in the Other group, click the arrow on the New Object button,
and click Macro from the list of three options. (The top half of the New Object button
displays the last type of new object created —Macro, Module, or Class Module. If
you see the Macro icon in the top half of the New Object button, you can also click
that button to begin creating a new macro.) Access opens a new Macro window
similar to the one shown in Figure 1. In the upper part of the Macro window, you
define your new macro; and in the lower part, you enter settings, called arguments,
for the actions you've selected for your macro. The upper part shows at least two
columns, Action and Comment. You can view all five columns shown in Figure 1 by
clicking the Macro Names, Conditions, and Arguments buttons in the Show/Hide
group on the Design tab.

You can cause the Macro Name and Condition columns to appear automatically
for any new macro by selecting the Names Column and Conditions Column check
boxes under Show In Macro Design in the Display section of the Advanced category
in the Access Options dialog box.

| T

|

Figure 5.1 A new Macro window displays columns where you can define your
macro.

91

Notice that the arca at the lower right displays a brief help message. The
message changes depending on where the insertion point is located in the upper par
of the window.

You can always press I'l to open a context-sensitive Help topic.

In the Action column, you can specify any one of the 70 macro actions provided
by Office Access 2007. If you click any box in the Action column, an arrow appears
at the right side of the box. Click this arrow to open a list of the macro actions, as
shown in Figure 5.2

Figure 5.2 The list of macro actions displays 70 actions you can use in Office
Access 2007.
The Macro Builder has been redesigned in Access 2010 to make it even easier to
create, modify, and share Access Macros. Watch a video or try Office 2010!
Saving your macro

You must save a macro before you can run it. Click the Save button on th
Quick Access Toolbar, or click the Microsoft Office Button and then click Save.
When you do so, Access opens the dialog box shown in Figure 3. Enter the name for
this macro, and click OK to save it.

[Save As : .

Macro Name:
TestGreeting]

Figure 5.3. Enter a name for your macro in the Save As dialog box.

Testing your macro
You can run some macros directly from the Navigation Pane or from the Macro
window because they don't depend on controls on an open form or report. If your
92

macro does depend on a form or a report, you must link the macro to the appropriate
event and run it that way. However you run your macro, Access provides a way to
test it by allowing you to single step through the macro actions.

To activate single stepping, right-click the macro you want to test in the
Navigation Pane, and then click Design View on the shortcut menu. This opens the
macro in the Macro window. Click the Single Step button in the Tools group on the
Design tab. Now when you run your macro, Access opens the Macro Single Step
dialog box before executing each action in your macro. In this dialog box, you'll see
the macro name, the action, and the action arguments.

Try this procedure with the macro you just created. Open the Macro window,
click the Single Step button, and then click the Run button in the Tools group on the
Design tab. The Macro Single Step dialog box opens, as shown in Figure 4. The
Macro Single Step dialog box also shows you the result of testing your condition.

Macro Qinglé “St:p‘

Macre Name!

TestGresting s
Stop AF Macros.
Candrion: i . :
True Corkinue
Action Nasme
MegBox
Argumsnits: Error Numbes :

Weltame to the Wedding List Database, Yes, Information, Greet. o

Figure 5.4. The Macro Single Step dialog box allows you to test each action in
your macro.

If you click the Step button in the dialog box, the action you see in the dialog
box will run, and you'll see the dialog box opened by your MsgBox action with the
message you created, as shown in Figure 5. Click the OK button in the message box
to dismiss it. If your macro had more than one action defined, you would have
returned to the Macro Single Step dialog box, which would have shown you the next
action. In this case, your macro has only one action, so Access returns you to the
Macro window.

Greetings - e

£3

g’ Welcome to the Wedding List Database,

Figure 5.5 Access displays the dialog box you created by using the MsgBox
action in your macro.

93

If Access encounters an error in any macro during the normal execution of your
application, Access first displays a dialog box explaining the error it found. You then
see an Action Failed dialog box, which is similar to the Macro Single Step dialog
box, containing information about the action that caused the problem. At this point,
you can click only the Stop All Macros button. You can then edit your macro to fix
the problem.

Before going further, you might want to return to the Macro window and click
the Single Step button again so it's no longer selected. Otherwise you'll continue to
single step through every macro you run until you exit and restart Access or click
Continue in one of the Single Step dialog boxes.

As you dig deeper into macros you'll find out how to include multiple actions
and define condition checking so that different actions are performed depending on
the values in your forms or reports.

Laboratory session Ne6,7
The theme of lesson: Create databases in the Delphi environment.

The aim of lesson: Explain the meaning of databases in the Delphi environment
and develop the skills and abilities to create an alias and database; get to know type
of components; increase students’ interests in creating and programming database
system.

Content of lesson

Database Desktop provides an easy way to create, restructure, and query tables
to help you develop database applications with Delphi. You can use Database
Desktop either as a standalone application on a single computer running Windows or
as a multiuser application on a network.

To start Database Desktop, double-click the Database Desktop icon in the
Delphi program group or choose FilelRun in the Program Manager and run
DBD.EXE. Database Desktop has several command-line options that let you control
its configuration. The first time you start Database Desktop, the Database Desktop
window opens. All Database Desktop windows are opened in and contained by this
window.

94

- Database D op ndh fom

File Utilities Window Help

Open Table

The Database Desktop application window

Files you open in Database Desktop appear in their own type of windows.
Tables appear in Table windows, queries appear in Query windows, and SQL
statements appear in the SQL Editor.

In Database Desktop you work with three types of files: QBE queries, .SQL
files, and tables. Other files are created automatically by Database Desktop. For a list
of file extensions used by Database Desktop, search for “file-name extensions” in the
keyword list in Database Desktop Help, and choose the topic “Types of Files.”

Opening files

To open a QBE query, SQL statement, or table, follow these steps:

1 Choose File|Open.

2 Choose the type of file to open—QBE query, SQL statement, or table.

3 Specify the file to open.

The Select File dialog box appears. For detailed information on the Select File
dialog box, search for “Select File dialog box” in the keyword list in Database
Desktop Help.

Note To access tables stored on a network, you must specify the location of the
network control file. You do this by running the BDE Configuration Utility; double-
click the BDE Configuration Utility icon in the Delphit program group.

Configuration Utility for more details.

Setting up a working directory

The working directory is where Database Desktop looks first for files. The
Working Directory setting controls what files are listed in File|Open and File|Save
dialog boxes. So, for example, if you want to open
C:\DBD\SAMPLES\BOOKORD.DB, make CADBD\SAMPLES your working
directory so that you see BOOKORD.DB when you choose File|Open|Table.

To specify a working directory, choose FilejWorking Directory, then type the
path to the directory. SQL You cannot set your working directory to an alias on a
remote server.

95

Setting up a private directory

You should store temporary tables, such as Answer, in a private directory so
they do not get overwritten by other users or applications. Choose File|Private
Directory to establish a private directory.

Files stored in your private directory are listed in File|Open and File[Save dialog
boxes, preceded by :PRIV: . Private directory files are visible and available to you,
but not to other network users.

Aliases

You can assign an alias as a shorthand for a directory using the Alias Manager
dialog box. For example, if you have a collection of tables and queries in one
directory (called CADBD\PROJECTS\CUSTLIST), you can specify the alias
:MYWORK: rather than type the entire path. Using aliases, you can avoid typing
long path names, and you can use the Path list in File|Open and File|Save dialog
boxes to list files in any directory for which you have defined an alias. To create an
alias, choose File|Aliases. For information on creating, changing, orremoving an
alias, search for “aliases” in the keyword list in Database Desktop Help.

Creating tables

This section describes tables and dlscusses how to create and restructure
Paradox, dBASE, and SQL tables in Database Desktop. A database is an organized
collection of information or data. An address book is an example of a database. It
organizes data about people into specific categories: names, phone numbers, and
addresses. In a relational database, the data is organized into tables. Each row of a
table contains information about a particular item; this is called a record. Each

column contains one piece of the information that makes up a record; this is called a
field.

CUSTOMER CustID Last Name lmt Street ~ City State Zip |t}
. i 1366 UD Aberdeen 'F ,'4:) Utah Street " ‘Washington DC 20032 b
2 138800 Svenvald | Goovermnment House - Reykjavik o
3 1,784.00 McDougal L 4950 Pullman Ave NE Seattle WA 93105
4 2177.00 Boonefernme S 128 University Drive Stanford CA 94323
5 2573.00 Chavez L Cypress Drive Palm Springs FL 32938
6. 277900 Fahd - 8§ The Palace Riyadh :
7 3128.00 Elspeth, Il R 1 Hanover Square London }
8 3.266.00 Hanover A 15 State Street Dallas TX 75043
9 3,271.00 Massey C 29 Aragona Drive Oxon Hil “MD- 29902 |
10 3,771.00 Montaigne L * 30 Tauton Drive Bellevus o WA 98004
11, 4277.00 Matthews R P. 0. Box 20336 . Albuguerque = 'NM 87234
; . : [+
e] : : : [+

To create a new table,
1 Choose File|New|Table. Or right-click the Open Table tool bar button, and
choose New. The Table Type dialog box appears.

96

2 If you want a table type other than Paradox for Windows, click the arrow next
to the list box and select from the drop-down list.

3 Choose OK. The Create Table dialog box appears. This dialog box may have a
slightly different appearance for different table types, but it will function the same.
For a step-by-step description of creating a table, search for “creating tables” in the
keyword list in Database Desktop Help, and choose the topic “Creating a New
Table.”

Adding, deleting, and rearranging fields
You can add, delete, and rearrange fields in the Field Roster.

For detailed information on changing fields, search for “fields” in the keyword list in
Database Desktop Help.”

Specifying field type

To specify the field type in the Create Table dialog box,

1 Select the Type column of the field you want.

2 Type the symbol (or name, for SQL tables) for the field type or select from the
dropdown list. You can use the list in two ways:

* Right-click the Type column again and click to select the field type.

* Press Spacebar to see the list, then choose the field type.

For information on field types and sizes, search for “field types” in the keyword list
in Database Desktop Help, and choose the topic for the type of table you are using
(Paradox, dBASE, or SQL).

Laboratory session Ne7

The theme of lesson:Create a table. Create the table structure by
programming. Table component.

The aim of lesson: Explain the meaning of databases in the Delphi environment
and develop the skills and abilities to create a tables; get to know type of components;
increase students’ interests in creating and programming database system.

Content of lesson

MASTAPP aliases. All TTable and TQuery components used in example code
in this chapter set their DatabaseName property to DBDEMOS. In contrast, the
complete demo in the MASTAPP directory does the following to facilitate porting:

1 The main form (MAIN.PAS) has a TDatabase component with its AliasName
property set to DBDEMOS and DatabaseName property set to MAST.

2 All datasets on all forms have their Database properties set to MAST. Now all
forms can use a different BDE alias simply by changing the main form’s TDatabase
component’s AliasName property.

Building a single-table form

The steps in this section show how to use the Database Form Expert to build a
singletable form. Of course, anything the expert does, you can do by hand, but the
expert saves a lot of time.

97

Property

Value

[Remarks

Active

False

When Active is False, data-aware controls do not
display data at design time.To make controls display
data at design time, set Active to True.

DataBaseName | MAST

| MAST is an alias that points to where the table
resides. Use aliases, not hard-coded paths, to make
_applications portable and easy to upsize.

Name Forml Use the Object Inspector to change names.
TableName PARTS.DB | Tells the component which table to link to.
4
What to do:

1 Choose Help|Database Form Expert to open the Form Expert.

2 Specify a table, fields, and field layout as shown in the following figure. The
Form Expert creates the form.

3 Press F9 to run the form. Click the navigator control buttons to move through
the records in the table.

The form contains one TDataSource component. The expert links it to the
TTable component by setting the properties listed in the following table. A
TDataSource component acts as a bridge between one dataset component (77able in
this case) and one or more data-aware controls that provide a visible interface to data,

Important TDataSource properties for a single-table form (continued)

Proéerty [Value

Remarks

AutoEdit

l

True (default)

‘When AutoFdit is True, Delphi puts the TDataSource

into Edit state automatically when the user changes a
value in a linked control. To make a 7DataSource read-
only, or to control when to enter Edit state, set AutoEdit
to False. TTable component linked to a table
TDataSource linked to the TTable

DataSet

Tablel

Specifies which TTable (or TQuery) is supplying the
data. Name DataSourcel Use the Object Inspector to
change names.

DataSet

Tablel

1

Specifies which TTable (or TQuery) is supplying the
data. Name DataSourcel Use the Object Inspector to
change names.

Important TDBGrid properties for a single-table form

(Property

} Value

| Remarks

98

DataSource | DataSourcel. | Links the DBGrid control to a TDataSource
component, which supplies the data.

The expert does more than create a form and components. It also generates a
line of code to open the table at run time in case you do not activate the table at
design time. For example, the expert creates 77able components with the Active
property set to False.

That’s why the various TDBEdit controls aren’t displaying data. You could set
Active to True, and the controls would display data from the first record. Instead, the
Form Expert generates the following code to open the table at run time.

procedure TEditPartsForm.FormCreate(Sender: TObject);
begin

Tablel.Open;

end;

This code is hooked to the form’s OnCreate event, so Delphi executes it before
creating the form. As a result, the table is opened before the form is displayed.

Laboratory session Ne8

The theme of lesson: Building a master-detail form

The aim of lesson: Explain the meaning of databases forms in the Delphi
environment and develop the skills and abilities to create a forms; get to know type of
components; increase students’ interests in creating and programming database
system.

Content of lesson

The steps in this section show how to use the Database Form Expert to build a
form containing two tables: a master table and a detail table, linked one-to-many.
This form is the basis for the CUSTORD.DFM form in MASTAPP. The master table
is CUSTOMER.DB and the detail table is ORDERS.DB. You can access both tables
using the MAST alias. The expert links these tables and creates components to
display data for one customer at a time, and for each customer, to display many
orders.

What to do

When you use the Database Form Expert, building a master-detail form is much
like building a single-table form.

1 Choose Help|Database Form Expert to open the Form Expert.

2 In the first panel, specify a master-detail form that uses TTable objects.

3 In subsequent panels, specify the master table (CUSTOMER.DB), fields (use
them all), and field layout (grid).

99

4 Specify the detail table (ORDERS.DB), fields (all), and field layout (grid).
5 Specify fields to link the master and detail tables as shown in the following
figure, then tell the expert to create the form.

How it works

The expert builds a master-detail form much as it builds a single-table form. It
creates TTable components and TDataSource components for the master table and
the detail table and links them to the underlying data by setting properties.

The expert creates controls to display the data from each table, and sefs
properties to link them to the corresponding TDataSource component. The expert
also creates a TDBNavigator control linked to the master table.

Building a one-many-many form

This section describes how to build a form that displays data from three tables
linked one-many-many. For example, one customer may place many orders, and each
order may have many items. Use the Database Form Expert to create a master-detail
form linking the Customer table to the Orders table as described on page 24. Then, to
display and link the Items table, place components and set properties by hand. You
can also use the techniques described here to build a master-detail form from scratch,

What to do
1 Choose Help|Database Form Expert to open the Form Expert.
2 In the first panel, specify a master-detail form that uses TTable objects.

In subsequent panels, specify the master table (CUSTOMER.DB), fields (use
them

all), and field layout (horizontal).

4 Specify the detail table (ORDERS.DB), fields (all), and field layout
(horizontal).

S Specify fields to link the master and detail tables: choose CustNo for the
IndexFieldNames property and link the CustNo fields in each table.

6 Tell the expert to create the form.

7 Move components around to make room at the bottom of the form. You may
have to change the Align property of some controls from alClient to alNone.

8 Place a TTable component, a TDataSource component, and a TDBGrid
component as shown in the following figure. (The TTable and TDataSource are on
the Data Access components page; the TDBGrid is on the Data Controls page.) These
components represent the third table in the one-many-many link. In this example its
the Items table.

9 To create the link, set properties of these new components as shown in the
following table.

100

Laboratory session Ne9

The theme of lesson: Create query in Delphi environment. SQL language

The aim of lesson: Explain the meaning of databases in the Delphi environment
and develop the skills and abilities to create a tables; get to know type of components;
increase students’ interests in creating and programming database system.

Content of lesson

TQuery is a dataset component.In addition, TQuery enables Delphi applications
to issue SQL statements to a database engine (either the BDE or a server SQL
engine). The SQL statements can be either static or dynamic, that is, they can be set
at design time or include parameters that vary at run time.

When to use TQuery

For simple database operations, TTable is often sufficient and provides portable
database access through the BDE. However, TQuery provides additional capabilities
that TTable does not.

Use TQuery for:

*» Multi-table queries (joins).

* Complex queries that require sub-SELECTs.
* Operations that require explicit SQL syntax.
TTable does not use SQL syntax;

TQuery uses SQL, which provides powerful relational capabilities but may
increase an application’s overall complexity. Also, use of nonstandard (server-
specific) SQL syntax may decrease an application’s portability among servers; for
more information, see Chapter 6, “Building a client/server application.”

How to use TQuery

To access a database, set the DatabaseName property to a defined BDE alias, a
directory path for desktop database files, or a file name for a server database. If the
application has a TDatabase component, DatabaseName can also be set to a local
alias that it defines.

To issue SQL statements with a TQuery component:

» Assign the TQuery component’s SQL property the text of the SQL statement. You
can do this:

+ At design time, by editing the TQuery’s SQL property in the Object Inspector,
choosing the SQL property, and entering the SQL statements in the String List Editor
dialog box. With Delphi Client/Server, you can also use the Visual Query Builder to
construct SQL syntax.

* At run time, by closing any current query with Close, clearing the SQL property
with Clear, and then specifying the SQL text with the Add method.

* Execute the statement with the TQuery component’s Open or ExecSQL
method.

Use

101

Open for SELECT statements. Use ExecSQL for all other SQL statements. The
differences between Open and ExecSQL are discussed in a subsequent section.

* To use a dynamic SQL statement, use the Prepare method, provide parameters and
then call Open or ExecSQL. Prepare is not required, but will improve performance
for dynamic queries executed multiple times.

Creating the query text

You can enter the SQL text for a TQuery at design time by double-clicking on the
SQL property in the Object Inspector, or choosing the ellipsis button. The String List
Editor opens, enabling you to enter an SQL statement.

Choose OK to assign the text you enter to the SQL property of the query. Choose
Load to include text from a file or Save to save the text to a file.

To specify SQL text at run time, an application should first close the query with
Close and clear the SQL property with Clear. For example,

Queryl.Close; {This closes the query}

Queryl.SQL.Clear; {This clears the contents of the SQL property}

It is always safe to call Close—if the query is already closed, the call will have no
effect. Use the SQL property’s Add method to add the SQL statements to it. For
example,

Queryl.SQL.Add('SELECT * FROM COUNTRY");

Queryl. SOL.Add("WHERE NAME = "ARGENTINA'");

An application should always call Clear before specifying an SQL statement.
Otherwise, Add will simply append the statements to the existing one.

Note The SQL property may contain only one complete SQL statement at a
time. In general, multiple statements are not allowed. Some servers support multiple
statement “batch” syntax; if the server supports this, then such statements are
allowed.

You can also use the LoadFromFile method to assign the text in an SQL script file to
the SQL property. For example,
Queryl.SQL.LoadFromFile(C:\MYQUERY.TXT");

Laboratory session Nel0
The theme of lesson: Create a query by using SQL Builder

The aim of lesson: Explain the meaning of databases in the Delphi environment
and develop the skills and abilities to create a query by using SQL Builder; get to
know type of query components; increase students’ interests in creating and
programming database system.

Content of lesson

Delphi Client/Server includes a Visual Query Builder that enables you to construct
SQL

102

SELECT statements visually. To invoke the Visual Query Builder, right click on a

TQuery component and select Run Visual Query Builder. A dialog box prompts you

to

select the database to work with; select the desired database and choose OK. Another

dialog box will prompt you to enter the tables you want to query; select the desired

tables, choosing Add after each, and then choose Close. The Visual Query Builder
wmdow will then become active with the select tablcs

Visus} Query Bullder
7] :

ORDENS:0N0ERS:

| {0wdea

SaletPerson
ShipToContact
Shinladddal,

| Yable Name: 2
Option; ‘
Soil;
Gipup Condition:
O

For information on how to use the Visual Query Builder, refer to its online Help.
After
you have you constructed a query and exited the Visual Query Builder, the SQL
statement you constructed will be entered in the SQL property of the selected TQuery
component.
Executing a query
At design time, you can execute a query by changing its Active property in the Object
Inspector to True. The results of the query will be displayed in any data controls
connected to the Query component (through a data source).
At run time, an application can execute a query with either the Open or the ExecSQL
methods. Use Open for SQL statements that return a resulit set (SELECT statements).
Use
ExecSQL for all other SQL statements (INSERT, UPDATE, DELETE, and so on).
For example,
Queryl.Open; {Returns a result set}

If the SQL statement does not return a cursor and a result set from the database, use
ExecSQL instead of Open. For example,

Queryl.ExecSQL; {Does not return a result set}
If you don’t know at design time whether a query will return a result set, use a
try...except block with Open in the try part and ExecSQL in the except part.

The UniDirectional property

Use the UniDirectional property to optimize access to a database table through a
TQuery component. If you set UniDirectional to True, you can iterate through a table

103

more quickly, but you will only be able to move in a forward direction.
UniDirectional is False by default.

Laboratory session Nell

The theme of lesson: Create report in Delphi environment. Create a simple
report
The aim of lesson: Explain the meaning of databases in the Delphi environment
and develop the skills and abilities to create a simple report; get to know type of
report components; increase students’ interests in creating and programming database
system. i

Content of lesson

Delphi applications can include reports created with ReportSmith with the
TReport component. TReport appears on the Data Access component page. To
incorporate a report in an application, simply add a TReport component to the desired
form as youwould any other component. Then specify the name of the report (created
with ReportSmith) and other report parameters with properties of the component.

Designing reports with ReportSmith is described in Creating Reports. You can
invoke ReportSmith at design time by double-clicking on a TReport component, or
on the ReportSmith icon in the Delphi program group. Specify the name of an
existing report in the ReportName property and the directory in the ReportDir
property. To load ReportSmith Runtime and print the specified report, use the Run
method (i.e., Reportl.Run). The report prints on the default printer defined in
ReportSmith. Preview is a Boolean property that specifies whether to print the report
or just display it: If set to True, Run will display the report onscreen only; if set to
False, Run will print the report.

The AutoUnload property specifies whether to automatically unload the
ReportSmith Runtime executable after a report is run. Generally, if an application
runs one report at a time, AutoUnload should be True. If an application is going to
run a series of reports, then AutoUnload should be False.

The InitialValues property is of type TStrings and specifies the report variables
to use with the report. Each line specifies a report variable as follows:

REPORTVAR = value
Some important methods of TReport are listed in the following table:

Method Purpose

Run Run a report.

RunMacro Send a macro command to ReportSmith.

Connect Preconnect the report to a database, so it does not prompt for
login. e

104

SetVariabl Change a specific report variable. ‘

ReCalcReport Run a report again. Use this when report variables have changed \

What to do: printing reports
This example show how to print a ReportSmith report that lists MAST customers.
1 Choose File|New Form to open the Browse Gallery, then choose Blank form and
click OK to create a blank form.
2 Place a TReport component anywhere in the form. (The TReport component is on
the Data Access components page.)
3 Use the Object Inspector to set the TReport component’s properties as shown in the
following table.
4 Place a button control anywhere in the form.
5 Double-click the button to open a code window, then write code to handle its
OnClick event, as follows.

procedure TForm1.Button1Click(Sender: TOb]ect),

begin

Reportl.Run;

end;
6 Press F9 to run the form.
7 Click the button to run the report. If the TReport component’s Preview property is
set to True, Delphi displays the report onscreen; if Preview is False, Delphi sends the
report to the printer.

How it works

The Run method of TReport opens the run-time version of ReportSmith, which
prints or displays a report as specified by the TReport component’s properties. When
you’re designing a form, you can double-click a TReport component to open the full
version of ReportSmith and build a report.

105

5. Themes for Tutorial lessons
Tutorial Nel,2

Theme: Create a Database system

1. Open the database and establish a relationship between the Books table and the
Orders table using the Drag and Drop method.

2. Establish a relationship between the Customers table and the Orders table using the
3. Edit Relationships command on the Ribbon.

4. Edit an established relationship by double-clicking the link.

5. Explore the options and settings in the Edit Relationships dialog box.

6. Move the tables around in the relationship map.

7. Benefits of using relationships

Tutorial Ne3,4,5

Theme: Creating a Form

1. Scroll through the customer records using the Customers form.

2. Create a basic Books form using the Form command.

3. Use the new Books form to enter and save the following data:

Title: The Secret Streets of Savannah

Author: Amy Little

Category: Travel

Price: $34.99

Title: Cars and Trucks

Author: Jonathon Bradley

Category: Kids

Price: $14.99

Using the Combo Box command, create a drop down list on the Books form for the
following Categories:

Fiction

Non-Fiction

Kids

History

Technology

Home & Garden

Travel

Food

4. Add another record to the database using the Books form with the drop down
Category selector.

5. Use the Find and Replace command to change the price of all books that are
$14.99 to be $16.99.

106

4. Self-control
Self-control Nel,2

Theme: Create a Database system

Create a database in the MS Access, which consists of 3-4 tables and create two
users, privileges distribute according to roles in a database. Enter data into tables,
with 3-5 lines.

Tasks examples:

1. The University. Tables: students, teachers, subjects. Roles: The student — can
barrows, but can't make change; the Teacher — can look through and make changes
into a database. , :

2. Shop. Tables: buyers, sellers, the goods, purchases (connects buyers with the goods
and the sellers who have sold the goods). Roles: The buyer — sees the goods and the
purchases; Seller.

3. Bank. Tables: clients, contracts (between the client and the operator, on concrete
type of a contribution), types of deposits. Roles: Client, Operator.

4. Library. Tables: library tickets, books, orders of books (comparison of books and
library tickets). Roles: Librarian, Reader.

5. Cellular operator. Tables: clients, records of conversations (record about the client,
conversation time, a tariff), customer accounts. Roles: Client, Operator.

6. Real estate agency. Tables: real estate, client, agents, lease contract. Roles: Client,
Agent.

7.School. Tables: pupils, teachers, estimates. Roles: Pupils, Teachers.

8. Car-care center. Tables: clients, cars, masters. Roles: Client, Master.

9. Railway cash desk. Tables: routes, trains, tickets. Roles: The cashier, the Manager
— has full authority.

10. Support service. Tables: objects, employees, demands for works. Roles: Manager,
Technician.

Self-control Ne3,4,5
Theme: Creating a Query

Expand earlier made database to 5 — 6 tables. Prepare some difficult inquiries.
Think, what inquiries — most often used.
Tasks examples:

1. University. Tables: groups, chairs, books in subjects. Query: to find books, in
subjects which it passes.

107

2. Shop. Tables: commodity groups, departments. Query: on departments to find
buyers by departments.

3. Bank. Tables: bank offices, operators. Query: to find clients that with whom the
chosen operator concluded contracts.

4. Library. Tables: authors, genres. Query: to define favorite genres of the chosen
reader.

5. Cellular operator. Tables: tariffs, areas (where the operator serves). Query: to
display the conversations, which area was chosen.

6. Real estate agency. Tables: departments of agents, rent prices. Query: how many
rent pays that a chosen client.

7. School. Tables: classes, subjects. Query: to find pupils by marks.

8. Car-care center. Tables: spare parts, malfunctions. Query: Which spare parts are
required for chosen client.

9. Railway cash desk. Tables: clients, orders. Query: to display bookings by a known
train.

10. Support service. Tables: malfunctions, expendables. Query: to display the
expendables that used by chosen object.

Self-control Ne6,7,8
Theme: Create a form

Index fields so that it led to increase of speed of a database (at large volumes of data).
Explain the decision with reason.

1. Create representations for query which could be useful for real work of an
educational database.

2. University. Representation a form: to find books, in subjects which it passes.

3. Shop. Representation: on to find buyers by departments.

4. Bank. Representation: to find clients with whom the chosen operator concluded
contracts.

5. Library. Representation: to define favourite genres of the chosen reader.

6. Real estate agency. Representation: how many rent pays that a chosen client.

7. School. Representation: to find pupils by marks.

8. Car-care center. Representation: Which spare parts are required for chosen client.
9. Railway cash desk. Representation: to display bookings by a known train.

10. Support service. Representation: to display the expendables that used by chosen
object.

108

Self-control N9,10,11

Theme: Design a Database in the environment Delphi which you carried out on
the previous Self-control lessons.

Tasks examples:

1. The University. Tables: students, teachers, subjects. Roles: The student — can
barrows, but can't make change; the Teacher — can look through and make changes
into a database.

2. Shop. Tables: buyers, sellers, the goods, purchases (connects buyers with the goods
and the sellers who have sold the goods). Roles: The buyer — sees the goods and the
purchases; Seller.

3. Bank. Tables: clients, contracts (between the client and the operator, on concrete
type of a contribution), types of deposits. Roles: Client, Operator.

4, Library. Tables: library tickets, books, orders of books (comparlson of books and
library tickets). Roles: Librarian, Reader.

5. Cellular operator. Tables: clients, records of convexsatlons (record about the client,
conversation time, a tariff), customer accounts. Roles: Client, Operator.

6. Real estate agency. Tables: real estate, client, agents, lease contract. Roles: Client,
Agent.

7.School. Tables: pupils, teachers, estimates. Roles: Pupils, Teachers.

8. Car-care center. Tables: clients, cars, masters. Roles: Client, Master.

9. Railway cash desk. Tables: routes, trains, tickets. Roles: The cashier, the Manager
— has full authority.

10. Support service. Tables: objects, employees, demands for works. Roles: Manager,
Technician.

109

Tutorial Ne6,7,8

Theme: Create a Form, using constructor

1. Open the Orders Form in Layout View and change the form by:
2. Adding a picture using the Logo command.

3. Giving the form a new Title.

4. Modifying some of the text on the form.

5. Applying one of the AutoFormat options.

6. Moving or resizing an object on the form.

7. Applying a border to an object on the form.

Tutorial Ne9,10,11

Theme: Create a Query

1. Plan a query to find out which customers order a certain category of books.
2. Use the Query Design command to set up the query.

3. Run the query and view your results.

4. Save the query.

5. Modify the query to hide a field.

Tutorial Nel2,13,14,15

Theme: Create a Report

1. Create a report based on a table.

2. Create a report based on query.

3. Modify the layout of a report by:

4. Resizing or moving columns

5. Deleting report elements

6.Giving the report a new title

7. Applying an AutoFormat style to the report
8. Use groups, sorts, or totals in a report

6 Control questions

1 Microsoft Access 2007 is a:

A. word processing software package

B. slideshow presentation software package

C. relational database management software package *
D. spreadhsecet software package

2 The Ribbon is Microsoft Access 2007's new menu system.

A. True *
B. False

110

3 To open Access 2007 database objects, you must use the:
A, Navigation Pane*

B. Quick Access Toolbar

C. Ribbon

D. None of the above

4 A table is a collection of:
A. Forms

B. Queries

C. Records*

D. Reports

5 When designing a database in Access, what is the first thing you need to determine in order to begin?
A. The number of tables needed

B. The number of fields needed

C. The name of the tables

D. The purpose of the database *

6 When adding fields to a table, which “view” would you work in?
A. Datasheet view

B. Design view

C. Print view

D. Both A and B *

7 In a relationship map, you have a primary key in each table. What is a primary key?
A. A field that is the primary field in its own table, but shows up in another table

B. The second ficld in each table of a database

C. The first field in each table of the database *

D. The last field in each table of the database

8 Data validation is the process by which Access tests the data that is being entered into the database,
to make sure itis in an acceptable or valid format.

A. True *

B. False

9 When you are entering or editing a record, a pencil icon appears in the active record row.
A. True *
B. False

10 To encourage database users to save records, you can include a on the data entry
form.

A. Toggle Button

B. Action Button *

C. Combo Box

D. List Box

I1 You add an AutoFormat to a form or report in view,
A. Datasheet View

B. Design View

C. Print Preview

D. Layout View *

12 Access allows you to use or include a sort function in:
A. Queries
B. Reports

111

C. Tables
D. All of the above *

13 An ascending sort lists records:
A.AtoZ*

B.Zto A

C. Highest to Lowest

D. None of the above

14 When you set up a filter, you are telling Access to look for records that match a specific
that you set.

A. number limit

B. criteria *

C. total

D. command

15 An advanced filter is a small query run on
A. several tables at once

B. only one table *

C. several reports at once

D. only one report

16 You can NOT modify a query once it has been saved.
A. True
B. False

17 To include an addition function to a query in the query design view:
A. Use the Function command

B. Use the Addition command

C. Use the Totals command *

D. Use the Sort command

18 To limit the number of records that appear in a report, you must:
A. set the Limit option in Layout View

B. set Page Layout options

C. delete records from your tables

D. set the Return option in the query design *

7 Literature
The main literature:
1. C.J. Date. An Introduction to Database Systems. 8th Edition. Addison-Wesley, 2000.-1072

2. G. Hansen, Hansen, J. // Databases: Design and Management. Translation, Moscow 1999,

3. Xomonenko A.J., Lsirankos B.M., Maneues M.I'.// Basel gaudsix. Yyebuoe nocodue,
2002.

4. Xannikosa K.3. /Manimerrep Kopsl xaHe Gauki. Oky Kypanst. 2004 x. -160 6.

5. Stojanovic, T.A. (2007) Guidelines for Implementing Local Information Systems at the
Coast. COREPOINT and Cardiff University, Cardiff. http://corepoint.ucc.ie/Cpages/outputs.htm
Additional literature:

1. ikedme P. Cpodid, TTon H. BaituGepr SQL - nonuoe pyxoroncrso. [lepeson, Kues 1999r.
2. Haymosa M.A. CucTembl yripaBieHus 6a3amMul AJaHHBIX U 3HaHUWHA. Beiciuas mkosa, 1992r.
3. Huro C.M. [poexTuposanue 6a3 naHHbIx. GUHAKCH 1 cTaTHCTHKA, 1990,

112

4. Meiic C. Vcnons3zoBanue s3bika SQL obecrieuMBacT BO3MOXKHOCTL OObeAMHEHHs Oa3
JaHHbIX.B Mupe xomrnsloTepos, No 2, 1988.

. Jx.MaptH Opranuzaudst 6a3 JaHHBIX B BBIYHCAMTENBHBIX cucTeMax. M, Hayka
1980r.

6. ®aponos B.B. [Iporpammuposanne 6a3 aanssix Ha Delphi 7. Yue6upiii xypce, 2005.

7. 3onorosa C.H. [Npaktrkym no Access. @unatcel ¥ crarucTrka, Mocksa, 2000.

8. http://www freebsd.org/doc/handbook/network-servers.html
8 Glossary
A database is an organized collection of data.

The term database system implies that the data are managed to some level of
quality (measured in terms of accuracy, availability, usability, and resilience)

A field contains an item of data; that is, a character, or group of characters that are
related. '

A record is composed of a group of related fields.

A database file is sometimes called a table. A file may be composed of a complete
list of individuals on a mailing list, including their addresses and telephone numbers.

Data management systems are used to access and manipulate data in a database. A
database management system is a software package that enables users to edit, link,
and update files as needs dictate.

In order to track and analyze data effectively, each record requires a unique identifier
or what is called a key. The key must be completely unique to a particular record just
as each individual has a unique social security number assigned to them.

Database architectures can be distinguished by examining the way application logic
is distributed throughout the system. Application logic consists of three components:
Presentation Logic, Processing Logic, and Storage Logic.

In computing, a file server is a computer attached to a network that has the primary
purpose of providing a location for shared disk access, i.e. shared storage of computer
files (such as documents, sound files, photographs, movies, images, databases, etc.)
that can be accessed by the workstations that are attached to the same computer
network.

Since the crucial function of a file server is storage, technology has been developed
to operate multiple disk drives together as a team, forming a disk array.

113

File servers generally offer some form of system security to limit access to files to
specific users or groups. In large organizations, this is a task usually delegated to
what is known as directory services such as openl.DAP, Novell's eDirectory or
Microsoft's Active Directory

A database management system is a set of software programs that allows users to
create, edit and update data in database files, and store and retrieve data from those

database files. Data in a database can be added, deleted, changed, sorted or searched
all using a DBMS.

Database design is the process of producing a detailed data model of a database.
This logical data model contains all the needed logical and physical design choices
and physical storage parameters needed to generate a design in a Data Definition
Language, which can then be used to create a database.

Database designs also include ER (Entity-relationship model) diagrams. An ER
diagram is a diagram that helps to design databases in an efficient way.

Attributes in ER diagrams are usually modeled as an oval with the name of the
attribute, linked to the entity or relationship that contains the attribute.

114

